[1] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. vol. I and II. Springer, New York (2003) [2] Han, J.Y., Xiu, N.H., Qi, H.D.: Nonlinear Complementarity Theory and Algorithms. Shanghai Science and Technology Press, Shanghai (2006). (in Chinese) [3] Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51-80(2009) [4] Chen, X.J., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022-1038(2005) [5] Barbagallo, A., Guarino Lo Bianco, S.: Stochastic variational formulation for a general random timedependent economic equilibrium problem. Optim. Lett. 14, 2479-2493(2020) [6] Luo, M.J., Lin, G.H.: Expected residual minimization method for stochastic variational inequality problems. J. Optim. Theory Appl. 140, 103-116(2009) [7] Luo, M.J., Lin, G.H.: Convergence results of the ERM method for nonlinear stochastic variational inequality problems. J. Optim. Theory Appl. 142, 569-581(2009) [8] Fang, H.T., Chen, X.J., Fukushima, M.: Stochastic R0 matrix linear complementarity problems. SIAM J. Optim. 18, 482-506(2007) [9] Becker, H., Albera, L., Comon, P., Gribonval, R., Wendling, F., Merlet, I.: Brain-source imaging: from sparse to tensor models. IEEE Signal Process Mag. 32, 100-112(2015) [10] Qi, L.Q., Yu, G.H., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416-433(2010) [11] Ng, M., Qi, L.Q., Zhou, G.L.: Finding the largest eigenvalue of a non-negative tensor. SIAM J. Matrix Anal. Appl. 31, 1090-1099(2009) [12] Qi, L.Q., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301-316(2009) [13] Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72-84(2016) [14] Che, M.L., Qi, L.Q., Wei, Y.M.: Positive definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475-487(2016) [15] Du, S.Q., Zhang, L.P.: Amixed integer programming approach to the tensor complementarity problem. J. Glob. Optim. 73, 789-800(2019) [16] Hu, S.L., Wang, J., Huang, Z.H.: Error bounds for the solution sets of quadratic complementarity problems. J. Optim. Theory Appl. 179, 983-1000(2018) [17] Huang, Z.H., Qi, L.Q.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557-576(2017) [18] Luo, Z.Y., Qi, L.Q., Xiu, N.H.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471-482(2017) [19] Song, Y.S., Qi, L.Q.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069-1078(2016) [20] Song, Y.S., Qi, L.Q.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33(3), 308-323(2017) [21] Xu, Y., Gu, W.Z., Huang, Z.H.: Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems. Front. Math. China 14(3), 661-671(2019) [22] Wang, Y., Huang, Z.H., Qi, L.Q.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177(1), 137-152(2018) [23] Barbagallo, A., Guarino Lo Bianco, S.: Variational inequalities on a class of structured tensors. J. Nonlinear Convex Anal. 19(5), 711-729(2018) [24] Che, M.L., Qi, L.Q., Wei, Y.M.: Stochastic R0 tensors to stochastic tensor complementarity problems. Optim. Lett. 13, 261-279(2019) [25] Du, S.Q., Che, M.L.,Wei, Y.M.: Stochastic structured tensors to stochastic complementarity problems. Comput. Optim. Appl. 75(3), 649-668(2020) [26] Ming, Z.Y., Zhang, L.P., Qi, L.Q.: Expected residual minimization method for monotone stochastic tensor complementarity problem. Comput. Optim. Appl. 77, 871-896(2020) [27] Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,…, RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324-1342(2000) [28] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455-500(2009) [29] Kofidis, E., Regalia, Ph.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863-884(2002) [30] Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99-110(1992) [31] Fukushima, M.: Merit functions for variational inequality and complementarity problems. Nonlinear Optimization and Applications, pp. 155-170. Springer, Boston, MA (1996) [32] Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992) [33] Patrick, B.: Probability and Measure. Wiley-Interscience, New York (1995) |