Journal of the Operations Research Society of China ›› 2024, Vol. 12 ›› Issue (3): 809-828.doi: 10.1007/s40305-022-00432-6
Previous Articles Next Articles
Ya Zhang, Cong Sun
Received:
2021-09-29
Revised:
2022-06-22
Online:
2024-09-30
Published:
2024-08-15
Contact:
Cong Sun, Ya Zhang
E-mail:suncong86@bupt.edu.cn;zhangya0508@bupt.edu.cn
Supported by:
CLC Number:
Ya Zhang, Cong Sun. Cyclic Gradient Methods for Unconstrained Optimization[J]. Journal of the Operations Research Society of China, 2024, 12(3): 809-828.
[1] Loosli, G., Canu, S.: chap. 5, pp. 111-135. John Wiley & Sons, Ltd (2010) [2] Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223-311(2018) [3] Sun, C., Wang, Y.: Gravity-magnetic cross-gradient joint inversion by the cyclic gradient method. Optim. Method Softw. 35(5), 982-1001(2020) [4] Ramillien, G., Frappart, F., Gratton, S., Vasseur, X.: Sequential estimation of surface water mass changes from daily satellite gravimetry data. J. Geod. 89(3), 259-282(2015) [5] Larnier, S., Fehrenbach, J., Masmoudi, M.: The topological gradient method: From optimal design to image processing. Milan J. Math. 80(2), 411-441(2012) [6] De Asmundis, R., Di Serafino, D., Hager, W.W., Toraldo, G., Zhang, H.: An efficient gradient method using the yuan steplength. Comput. Optim. Appl. 59(3), 541-563(2014) [7] Huang, Y., Liu, H., Zhou, S.: Quadratic regularization projected Barzilai-Borwein method for nonnegative matrix factorization. Data Min. Knowl. Disc. 29(6), 1665-1684(2015) [8] Jiang, B., Dai, Y.: Feasible Barzilai-Borwein-like methods for extreme symmetric eigenvalue problems. Optim. Method Softw. 28(4), 756-784(2013) [9] Cauchy, A.: Méthode générale pour la résolution des systemes d’équations simultanées. Comput. Rend. Sci. Paris. 25, 536-538(1847) [10] Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. Tokyo 11, 1-16(1959) [11] Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141-148(1988) [12] Dai, Y., Yuan, Y.: Alternate minimization gradient method. IMA J. Numer. Anal. 23(3), 377-393(2003) [13] Raydan, M.: On the BarzilaiandBorwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13(3), 321-326(1993) [14] Dai, Y., Liao, L.: R-linear convergence of the BarzilaiandBorwein gradient method. IMA J. Numer. Anal. 22(1), 1-10(2002) [15] Dai, Y.: A new analysis on the Barzilai-Borwein gradient method. J. Oper. Res. Soc. China 1(2), 187-198(2013) [16] Dai, Y.H., Hager, W.W., Schittkowski, K., Zhang, H.C.: The cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26(3), 604-627(2006) [17] Yuan, Y.: A new stepsize for the steepest descent method. J. Comput. Math. 24(2), 149-156(2006) [18] Dai, Y., Yuan, Y.: Analysis of monotone gradient methods. J. Ind. Manag. Optim. 1(2), 181-192(2005) [19] Dai, Y.: Alternate step gradient method. Optimization 52(4-5), 395-415(2003) [20] Zhou, B., Gao, L.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35(1), 69-86(2006) [21] Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4(2), 299-312(2008) [22] Fletcher, R.: A limited memory steepest descent method. Math. Program. 135, 413-336(2012) [23] Gu, R., Du, Q.: A modified limited memory steepest descent method motivated by an inexact superlinear convergence rate analysis. IMA J. Numer. Anal. 41, 247-270(2020) [24] De Asmundis, R., di Serafino, D., Hager, W., Zhang, H.: An efficient gradient method using the yuan steplength. Comput. Optim. Appl. 59(3), 541-563(2014) [25] Sun, C., Liu, J.: New stepsizes for the gradient method. Optim. Lett. 14(4-5) (2020) [26] Huang, Y., Dai, Y., Liu, X., Zhang, H.: Gradientmethods exploiting spectral properties. Optim.Method Softw. 35(4), 1-25(2020) [27] Huang, Y., Liu, H.: Smoothing projected Barzilai-Borwein method for constrained non-lipschitz optimization. Comput. Optim. Appl. 65(3), 671-698(2016) [28] Huang, Y., Dai, Y., Liu, X.: Equipping Barzilai-Borwein method with two dimensional quadratic termination property. SIAM J. Optim. 31(4), 3068-3096(2021) [29] Liu, Z., Liu, H., Dong, X.: An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem. Optimization 67(3), 427-440(2018) [30] Liu, Z., Liu, H.: An efficient gradient method with approximately optimal stepsize based on tensor model for unconstrained optimization. J. Optimiz. Theory. App. 181(2), 608-633(2019) [31] Yuan, Y.: Step-sizes for the gradient method. Ams. Ip. Stud. Adv. Math. 42(2), 785-796(2008) [32] De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent methods. IMA J. Numer. Anal. 33(4), 1416-1435(2013) [33] Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for newton’s method. SIAM J. Numer. Anal. 23(4), 707-716(1986) [34] Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147- 161(2008) [35] Huang, Y., Liu, H.: On the rate of convergence of projected Barzilai-Borwein methods. Optim. Method Softw. 30(4), 880-892(2015) [36] Raydan, M.: The BarzilaiandBorwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26-33(1997) [37] Toint, P.: Some numerical results using a sparse matrix updating formula in unconstrained optimization. Math. Comput. 32(143), 839-851(1978) [38] Moré, J., Garbow, B., Hillstrom, K.: Testing unconstrained optimization software. ACM Trans. Math. Software 7, 17-41(1981) [39] Bongartz,I., Conn,A.,Gould,N.,Toint, P.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123-160(1995) [40] Tibshirani, Ryan, J.: The lasso problem and uniqueness. Electron. J. Stat. 7(1), 1456-1490(2013) [41] di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. 318, 176-195(2018) [42] Dai, Y., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177-182(1999) |
[1] | Gabrie Aníbal Carrizo, Nadia Soledad Fazzio, María Laura Schuverdt. A Nonmonotone Projected Gradient Method for Multiobjective Problems on Convex Sets [J]. Journal of the Operations Research Society of China, 2024, 12(2): 410-427. |
[2] | Gong-Lin Yuan, Ying-Jie Zhou, Meng-Xiang Zhang. A Hybrid Conjugate Gradient Algorithm for Nonconvex Functions and Its Applications in Image Restoration Problems [J]. Journal of the Operations Research Society of China, 2023, 11(4): 759-781. |
[3] | Jian Gu, Xian-Tao Xiao. A Framework of Convergence Analysis of Mini-batch Stochastic Projected Gradient Methods [J]. Journal of the Operations Research Society of China, 2023, 11(2): 347-369. |
[4] | De-Ren Han. A Survey on Some Recent Developments of Alternating Direction Method of Multipliers [J]. Journal of the Operations Research Society of China, 2022, 10(1): 1-52. |
[5] | Xiao-Liang Dong, Zhi-Feng Dai, Reza Ghanbari, Xiang-Li Li. An Adaptive Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition [J]. Journal of the Operations Research Society of China, 2021, 9(2): 411-425. |
[6] | Zhong-Ming Wu, Min Li. An LQP-Based Symmetric Alternating Direction Method of Multipliers with Larger Step Sizes [J]. Journal of the Operations Research Society of China, 2019, 7(2): 365-383. |
[7] | Wan-You Cheng, Dong-Hui Li. A Preconditioned Conjugate Gradient Method with Active Set Strategy for 1-Regularized Least Squares [J]. Journal of the Operations Research Society of China, 2018, 6(4): 571-586. |
[8] | Yurii Nesterov, Vladimir Shikhman. Computation of Fisher–Gale Equilibrium by Auction [J]. Journal of the Operations Research Society of China, 2018, 6(3): 349-390. |
[9] | Yun-Da Dong, Hai-Bin Zhang, Huan Gao. On Globally Q-Linear Convergence of a Splitting Method for Group Lasso [J]. Journal of the Operations Research Society of China, 2018, 6(3): 445-454. |
[10] | Morteza Kimiaei, Susan Ghaderi. A New Restarting Adaptive Trust-Region Method for Unconstrained Optimization [J]. Journal of the Operations Research Society of China, 2017, 5(4): 487-507. |
[11] | Xiang Gao· Shu-Zhong Zhang. First-Order Algorithms for Convex Optimization with Nonseparable Objective and Coupled Constraints [J]. Journal of the Operations Research Society of China, 2017, 5(2): 131-. |
[12] | Ya-Feng Liu, Rui Diao,Feng Ye,Hong-Wei Liu. An Efficient Inexact Newton-CG Algorithm for the Smallest Enclosing Ball Problem of Large Dimensions [J]. Journal of the Operations Research Society of China, 2016, 4(2): 167-. |
[13] | Yu-Fan Li· Zheng-Hai Huang · Min Zhang. Entropy Function-Based Algorithms for Solving a Class of Nonconvex Minimization Problems [J]. Journal of the Operations Research Society of China, 2015, 3(4): 441-. |
[14] | William Hager · Cuong Ngo ·Maryam Yashtini· Hong-Chao Zhang. An Alternating Direction Approximate Newton Algorithm for Ill-Conditioned Inverse Problems with Application to Parallel MRI [J]. Journal of the Operations Research Society of China, 2015, 3(2): 139-. |
[15] | Hai-Bin Zhang · Jiao-Jiao Jiang · Zhi-Quan Luo. On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems [J]. Journal of the Operations Research Society of China, 2013, 1(2): 163-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||