[1] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) [2] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. control Optim. 38(2), 431–446(2000) [3] Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall Inc., Englewood Cliffs (1962) [4] Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program 55(3), 293–318(1992) [5] Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program 111, 173–199(2008) [6] Lawrence, J., Spingarn, J.E.: On fixed points of non-expensive piecewise isometric mappings. Proc. Lond. Math. Soc 3rd Ser. 55, 605–624(1987) [7] Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346(1962) [8] Dong, Y.D., Fang, B.B., Wang, X.Y.: New inertial factors of a splitting method for monotone inclusions (2018). http://www.optimization-online.org/DB_HTML/2018/04/6576.html. Accessed 16 Apr. 2018 [9] Rosasco, L., Villa, S., Vũ, B.C.: Stochastic Forward-Backward Splitting for Monotone Inclusions. J. Optim. Theory Appl. 169, 388–406(2016) [10] He, B.S., Liao, L.Z., Wang, S.L.: Self-adaptive operator splitting methods for monotone variational inequalities. Numer. Math. 94, 715–737(2003) [11] Dong, Y.D., Fischer, A.: A family of operator splitting methods revised. Nonlinear Anal. 72, 4307–4315(2010) [12] Huang, Y.Y., Dong, Y.D.: New properties of forward-backward splitting and a practical proximaldescent algorithm. Appl. Math. Comput. 237, 60–68(2014) [13] Li, M., Bnouhachem, A.: A modified inexact operator splitting methods for monotone variational inequalities. J. Global. Optim. 41, 417–426(2008) [14] Han, D.R.: Inexact operator splitting methods with self-adaptive strategy for variational inequality problems. J. Optim. Theory Appl. 32(2), 227–243(2007) [15] Candès, E., Romberg, J., Tao, T.: Stable signal recovery from imcomplete inaccurate information. Commun. Pure Appl. Math. 59, 1207–1233(2005) [16] Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52, 489–509(2006) [17] Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597(2007) [18] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202(2009) [19] Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process 1, 586–597(2007) [20] Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627(1995) [21] Dolan, E.D., Morè, J.J.: Benchmarking optimization software with performance profiles. Math. Program 91, 201–213(2002) |