[1] Xiang, S., Zhou, Y.: On essential sets and essential components of efficient solutions for vector optimization problems. J. Math. Anal. Appl. 315, 317-326(2006) [2] Song, Q.Q., Tang, G.Q., Wang, L.S.: On essential stable sets of solutions in set optimization problems. J. Optim. Theory Appl. 156, 591-599(2013) [3] Xu, Y.D., Li, S.J.: Continuity of the solution set mappings to a parametric set optimization problem. Optim. Lett. 8, 2315-2327(2014) [4] Xu, Y.D., Li, S.J.: On the solution continuity of parametric set optimization problems. Math. Methods Oper. Res. 84, 223-237(2016) [5] Han, Y., Huang, N.J.: Well-posedness and stability of solutions for set optimization problems. Optimization 66, 17-33(2017) [6] Han, Y., Zhang, K.: Semicontinuity of the minimal solution mappings to parametric set optimization problems on Banach lattices. Optimization https://doi.org/10.1080/02331934.2022.2045985(2022) [7] Zhang, C.L., Huang, N.J.:Well-posedness and stability in set optimization with applications. Positivity 25, 1153-1173(2021) [8] Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Convergence of solutions of a set optimization problem in the image space. J. Optim. Theory Appl. 170, 358-371(2016) [9] Han, Y., Zhang, K., Huang, N.J.: The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé-Kuratowski convergence. Math. Methods Oper. Res. 91, 175-196(2020) [10] Karuna, Lalitha, C.S.: External and internal stability in set optimization. Optimization 68, 833-852(2019) [11] Anh, L.Q., Duy, T.Q., Hien, D.V.: Stability of efficient solutions to set optimization problems. J. Glob. Optim. 78, 563-580(2020) [12] Gupta, M., Srivastava, M.: On Levtin-Polyak well posedness and stability in set optimization. Positivity 25, 1903-1921(2021) [13] Dhingra, M., Lalitha, C.S.: Approximate solutions and scalarization in set-valued optimization. Optimization 66, 1793-1805(2017) [14] Karuna, Lalitha, C.S.: External and internal stability in set optimization using gamma convergence. Carpathian J. Math. 35, 393-406(2019) [15] Geoffroy, M.H.: A topological convergence on power sets well-suited for set optimization. J. Global Optim. 73, 567-581(2019) [16] Chen, J.,Wang, G., Ou, X., Zhang,W.: Continuity of solutionsmappings of parametric set optimization problems. J. Ind. Manag. Optim. 16, 25-36(2020) [17] Karuna, Lalitha, C.S.: Continuity of approximate weak efficient solution set map in parametric set optimization. J. Nonlinear Convex Anal. 19, 1247-1262(2018) [18] Zhang, C.L., Huang, N.J.: On the stability of minimal solutions for parametric set optimization problems. Appl. Anal. 100, 1533-1543(2021) [19] Liu, P.P., Wei, H.Z., Chen, C.R., Li, S.J.: Continuity of solutions for parametric set optimization problems via scalarization methods. J. Oper. Res. Soc. China 11, 1-19(2018) [20] Karaman, E., Soyertem, M., Güvenç, · IA., Tozkan, D., KüçüK, M., KüçüK, Y.: Partial order relations on family of sets and scalarizations for set optimization. Positivity 22, 783-802(2018) [21] Lalitha, C.S., Chatterjee, P.: Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities. J. Optim. Theory Appl. 155, 941-961(2012) [22] Pallaschke, D., Urbá nski, R.: Pairs of Compact Convex Sets: Fractional arithmetic with Convex Sets. Volume 548 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht (2002) [23] Khan, A.A., Tammer, C., Zǎlinescu, C.: Set-valued Optimization: An Introduction with Applications. Springer, Berlin (2015) [24] Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, 1822-1833(2012) [25] Khushboo, Lalitha, C.S.: Scalarizations for a set optimization problem using generalized oriented distance function. Positivity 23, 1195-1213(2019) [26] Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67, 1726-1736(2007) [27] Anh, L.Q., Duy, T.Q., Hien, D.V., Kuroiwa, D., Petrot, N.: Convergence of solutions to set optimization problems with the set less order relation. J. Optim. Theory Appl. 185, 416-432(2020) [28] Kuroiwa, D.: On duality of set-valued optimization, Research on nonlinear analysis and convex analysis (Japanese) (Kyoto, 1998) Sūrikaisekikenkyūsho Kōkyūroku. 1071, 12-16(1998) [29] Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis: Pure and applied mathematics. Wiley, New York (1984) [30] Kuroiwa, D.: The natural criteria in set-valued optimization, Research on nonlinear analysis and convex analysis (Japanese) (Kyoto, 1997) Sūrikaisekikenkyūsho Kōkyūroku. 1031, 85-90(1998) |