[1] Hestenes, M.R.:Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303-320(1969) [2] Powell, M.J.D.:A method for nonlinear constraints in minimization problems. In:Fletcher, R.(ed.) Optimization, pp. 283-298. Academic Press, New York (1969) [3] Rockafellar, R.T.:A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Program. 5, 354-373(1973) [4] Rockafellar, R.T.:The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 12, 555-562(1973) [5] Rockafellar, R.T.:Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97-116(1976) [6] Rockafellar, R.T.:Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898(1976) [7] Bertsekas, D.P.:Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982) [8] Conn, A.R., Gould, N.I.M., Toint, P.L.:A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545-572(1991) [9] Contesse-Becker, L.:Extended convergence results for the method of multipliers for non-strictly binding inequality constraints. J. Optim. Theory Appl. 79, 273-310(1993) [10] Ito, K., Kunisch, K.:The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces. Math. Program. 46, 341-360(1990) [11] Sun, D.F., Sun, J., Zhang, L.W.:The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349-391(2008) [12] Zhang, J., Wang, M., Hong, M., Zhang, S.:Primal-dual first-order methods for affinely constrained multi-block saddle point problems. arXiv:2109.14212v2[math.OC] 8 Oct (2021) [13] Tsaknakis, I., Hong, M., Zhang, S.:Minimax problems with coupled linear constraints:computational complexity, duality and solution methods. arXiv:2110.11210v1[math.OC] 21 Oct (2021) [14] Goktas, D., Greenwald, A.:Convex-concave min-max Stackelberg games. arXiv:2110.05192v2[cs.GT] 10 Nov (2021) [15] Dai, Y.H., Zhang, L.W.:Optimality conditions for constrained minimax optimization. CSIAM Trans. Appl. Math. 1(2), 296-315(2020) [16] Jin, C., Netrapalli, P., Jordan, M.I.:What is local optimality in nonconvex-nonconcave minimax optimization?arXiv:1902.00618v2[cs.LG] 3 Jun (2019) [17] Debreu, G.:Definite and semidefinite quadratic forms. Econometrica 20, 295-300(1952) [18] Puntanen, S., Styan, G.P.H.:Historical introduction:Issai Schur and the early development of the Schur complement. In:Zhang, F.Z.(ed.) The Schur Complement and its Application, pp. 1-16. Springer (2005) [19] Wang, G.R., Wei, Y.M., Qiao, S.Z.:Generalized Inverses:Theory and Computations. Science Press, Springer, Beijing (2018) |