Journal of the Operations Research Society of China ›› 2024, Vol. 12 ›› Issue (2): 298-340.doi: 10.1007/s40305-023-00535-8
Previous Articles Next Articles
Peng-Jie Liu1,2,3, Jin-Bao Jian2, Hu Shao1, Xiao-Quan Wang1, Jia-Wei Xu4, Xiao-Yu Wu1
Received:
2022-09-09
Revised:
2023-07-06
Online:
2024-06-30
Published:
2024-06-12
Contact:
Jin-Bao Jian, Peng-Jie Liu, Hu Shao, Xiao-Quan Wang, Jia-Wei Xu, Xiao-Yu Wu
E-mail:jianjb@gxu.edu.cn;liupengjie2019@163.com;shaohu@cumt.edu.cn;wxq4869@163.com;1906301035@st.gxu.edu.cn;xiaoyuwu0218@163.com
Supported by:
CLC Number:
Peng-Jie Liu, Jin-Bao Jian, Hu Shao, Xiao-Quan Wang, Jia-Wei Xu, Xiao-Yu Wu. A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses[J]. Journal of the Operations Research Society of China, 2024, 12(2): 298-340.
[1] Yang, L.F., Luo, J.Y., Xu, Y., Zhang, Z.R., Dong, Z.Y.:A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading. IEEE Trans. Industr. Inform. 16(3), 1858-1872(2020) [2] Yang, L.F., Yang, Y., Chen, G., Dong, Z.Y.:Distributionally robust framework and its approximations based on vector and region split for self-scheduling of generation companies. IEEE Trans. Industr. Inform. 18(8), 5231-5241(2022) [3] Jian, J.B., Zhang, C., Yin, J.H., Yang, L.F., Ma, G.D.:Monotone splitting sequential quadratic optimization algorithm with applications in electric power systems. J. Optim. Theory Appl. 186, 226-247(2020) [4] Fan, Y.R., Buccini, A., Donatelli, M., Huang, T.Z.:A non-convex regularization approach for compressive sensing. Adv. Comput. Math. 45, 563-588(2019) [5] Zeng, J.S., Xu, Z.B., Zhang, B.C., Hong, W., Wu, Y.R.:Accelerated L1/2 regularization based SAR imaging via BCR and reduced Newton skills. Signal Process. 93, 1831-1844(2013) [6] Xu, Z.B., Chang, X.Y., Xu, F.M., Zhang, H.:L1/2 regularization:a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013-1027(2012) [7] Liu, Z.Y., Chen, X.Y., Hu, J.T., Wang, S.A., Zhang, K., Zhang, H.G.:An alternating direction method of multipliers for solving user equilibrium problem. Eur. J. Oper. Res. 310(3), 1072-1084(2023) [8] Shao, H., Lam,W.H.K., Tam,M.L.:Areliability-based stochastic traffic assignmentmodelfor network with multiple user classes under uncertainty in demand. Netw. Spat. Econ. 6(3-4), 173-204(2006) [9] Glowinski, R., Marroco, A.:Sur l'approximation, paréléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires, Revue française d'automatique, informatique, recherche opérationnelle. Anal. Num. 9(R2), 41-76(1975) [10] Gabay, D., Mercier, B.:A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40(1976) [11] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:Distributed optimization and statistical learning with the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122(2011) [12] Glowinski, R.:On Alternating Direction Methods of Multipliers:A Historical Perspective. Springer, Dordrecht (2014) [13] Han, D.R.:A survey on some recent developments of alternating direction method of multipliers. J. Oper. Res. Soc. China 10, 1-52(2022) [14] Han, D.R., Sun, D.F., Zhang, L.W.:Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622-637(2017) [15] Han, D.R., Yuan, X.M.:A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155, 227-238(2012) [16] Chen, C.H., Chan, R.H., Ma, S.Q., Yang, J.F.:Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8(4), 2239-2267(2015) [17] Chen, C.H., Li, M., Yuan, X.M.:Further study on the convergence rate of alternating direction method of multipliers with logarithmic-quadratic proximal regularization. J. Optim. Theory Appl. 166, 906-929(2015) [18] Chen, C.H., Li, M., Liu, X., Ye, Y.Y.:Extended ADMM and BCD for nonseparable convex minimization models with quadratic coupling terms:Convergence analysis and insights. Math. Program. 173, 37-77(2019) [19] Li, P.X., Shen, Y., Jiang, S.H., Liu, Z.H., Chen, C.H.:Convergence study on strictly contractive Peaceman-Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms. Comput. Optim. Appl. 78, 87-124(2021) [20] Deng, W., Yin, W.T.:On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66, 889-916(2015) [21] Hager, W.W., Yashtini, M., Zhang, H.:An O (1/k) convergence rate for the variable Stepsize Bregman operator splitting algorithm. SIAM J. Numer. Anal. 53, 1535-1556(2016) [22] Hong, M.Y., Luo, Z.Q.:On the linear convergence of the alternating direction method of multipliers. Math. Program. 162, 165-199(2017) [23] Gu, Y., Jiang, B., Han, D.R.:An indefinite-proximal-based strictly contractive Peaceman-Rachford splitting method. J. Comput. Math. 41, 1017-1040(2022) [24] Lin, T.Y., Ma, S.Q., Zhang, S.Z.:On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3, 251-274(2015) [25] Wu, Z.M., Li, M.:An LQP-based symmetric alternating direction method of multipliers with larger step sizes. J. Oper. Res. Soc. China 7, 365-383(2019) [26] Gao, X., Zhang, S.Z.:First-order algorithms for convex optimization with nonseparable objective and coupled constraints. J. Oper. Res. Soc. China 5, 131-159(2017) [27] Gao, X., Zhang, S.Z., Xu, Y.Y.:Randomized primal-dual proximal block coordinate updates. J. Oper. Res. Soc. China 7, 205-250(2019) [28] Lin, T.Y., Ma, S.Q., Zhang, S.Z.:On the global linear convergence of the ADMM with multiblock variables. SIAM J. Optim. 25(3), 1249-1963(2015) [29] Ling, Q., Shi, W., Wu, G., Ribeiro, A.:DLM:Decentralized linearized alternating direction method of multipliers. IEEE Trans. Signal Process. 63(15), 4051-4064(2015) [30] Ouyang, Y.Y., Chen, Y.M., Lan, G.H., Pasiliao, E., Jr.:An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644-681(2015) [31] Qiao, L.B., Zhang, B.F., Su, J.S., Lu, X.C.:Linearized alternating direction method of multipliers for constrained nonconvex regularized optimization. Proc. 8th Asian Conf. Mach. Learn. 63, 97-109(2016) [32] Guo, K., Han, D.R., Wu, T.T.:Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. 94(8), 1653-1669(2017) [33] Yashtini, M.:Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization. J. Glob. Optim. 84, 913-939(2022) [34] Liu, P.J., Jian, J.B., Xu, J.W., Ma, G.D.:A linear approximation Bregman-type Peaceman-Rachford splitting method for nonconvex nonseparable optimization (in Chinese). Acta. Math. Sin. 66(01), 75-94(2023) [35] Jia, Z.H., Gao, X., Cai, X.J., Han, D.R.:Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. J. Optim. Theory Appl. 188, 1-25(2021) [36] Jia, Z.H., Gao, X., Cai, X.J., Han, D.R.:The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. J. Ind. Manag. Optim. 17(4), 1943-1971(2021) [37] Bartz, S., Campoy, R., Phan, H.M.:An adaptive alternating direction method of multipliers. J. Optim. Theory Appl. 195, 1019-1055(2022) [38] Dao, M.N., Phan, H.M.:Adaptive Douglas-Rachford splitting algorithm for the sum of two operators. SIAM J. Optim. 29(4), 2697-2724(2019) [39] Bartz, S., Dao, M.N., Phan, H.M.:Conical averagedness and convergence analysis of fixed point algorithms. J. Glob. Optim. 82(2), 351-373(2022) [40] Li, G.Y., Pong, T.K.:Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434-2460(2015) [41] Liu, P.J., Jian, J.B., He, B., Jiang, X.Z.:Convergence of Bregman Peaceman-Rachford splittingmethod for nonconvex nonseparable optimization. J. Oper. Res. Soc. China 11(4), 707-733(2022) [42] Wang, F.H., Cao, W.F., Xu, Z.B.:Convergence of multi-block Bregman ADMM for nonconvex composite problems. Sci. China Inf. Sci. 61(12), 122101(2018) [43] Wang, F.H., Xu, Z.B., Xu, H.K.:Convergence of Bregman Alternating Direction Method with Multipliers for Nonconvex Composite Problems. arXiv:1410.8625(2014) [44] Liu, P.J., Jian, J.B., Ma, G.D.:A Bregman-style partially symmetric alternating direction method of multipliers for nonconvex multi-block optimization. Acta Math. Appl. Sin. Eng. Ser. 39(2), 354-380(2023) [45] Xu, J.W., Chao, M.T.:An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization. J. Appl. Math. Comput. 68, 1-27(2022) [46] Jian, J.B., Ma, G.D., Liu, P.J., Xu, J.W.:Convergence analysis of an improved Bregman-type Peaceman-Rachford splitting algorithm for nonconvex nonseparable linearly constrained optimization problems. J. Comput. Appl. Math. 426, 115086(2023) [47] Bot, R.I., Nguyen, D.K.:The proximal alternating direction method of multipliers in the nonconvex setting:convergence analysis and rates. Math. Oper. Res. 45(2), 682-712(2020) [48] Wu, Z.M., Li, M., Wang, D.Z.W., Han, D.R.:A symmetric alternating direction method of multipliers for separable nonconvex minimization problems. Asia Pac. J. Oper. Res. 34(6), 1750030(2017) [49] Themelis, A., Patrinos, P.:Douglas-Rachford splitting and ADMM for nonconvex optimization:Tight convergence results. SIAM J. Optim. 30(1), 149-181(2020) [50] Goncalves, M.L.N., Melo, J.G., Monteiro, R.D.C.:Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems. Pac. J. Optim. 15(3), 379-398(2019) [51] Yashtini, M.:Multi-block nonconvex nonsmooth proximal ADMM:Convergence and rates under Kurdyka-Łojasiewicz property. J. Optim. Theory Appl. 190, 966-998(2021) [52] Liu, P.J., Shao, H., Wang, Y., Wu, X.Y.:Local linear convergrnce rate analysis of a symmetric ADMM with relaxation-step for nonconvex optimization. J. Sys. Sci. Math. Sci. 43(1), 78-93(2023)(in Chinese) [53] Bai, J.C., Guo, K., Liang, J.L., Jing, Y., So, H.C.:Accelerated symmetric ADMM and its applications in large-scale signal processing. J. Comput. Math.(2023). https://doi.org/10.4208/jcm.2305-m2021-0107 [54] Barzilai, J., Borwein, J.M.:Two point step size gradient method. IMA J. Numer. Anal. 8, 141-148(1988) [55] Rockafellar, R., Wets, R.:Variational Analysis. Springer-Verlag, Berlin Heidelberg (1998) [56] Nesterov, Y.:Introduction Lectures on Convex Optimization:A Basic Course. Springer Science&Business Media, Berlin (2013) [57] Attouch, H., Bolte, J., Redont, P., Soubeyran, A.:Proximal alternating minimization and projection methods for nonconvex problems:An approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35, 438-457(2010) [58] Attouch, H., Bolte, J., Svaiter, B.F.:Convergence of descent methods for semi-algebraic and tame problems:Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1-2), 91-129(2013) [59] Bolte, J., Sabach, S., Teboulle, M.:Proximal alternating linearized minimization or nonconvex and nonsmooth problems. Math. Program. 146(1-2), 459-494(2014) |
[1] | Peng-Jie Liu, Jin-Bao Jian, Bo He, Xian-Zhen Jiang. Convergence of Bregman Peaceman-Rachford Splitting Method for Nonconvex Nonseparable Optimization [J]. Journal of the Operations Research Society of China, 2023, 11(4): 707-733. |
[2] | Xin-Xin Li, Xiao-Ya Zhang. A New Stopping Criterion for Eckstein and Bertsekas’s Generalized Alternating Direction Method of Multipliers [J]. Journal of the Operations Research Society of China, 2023, 11(4): 941-955. |
[3] | Hong-Mei Chen, Xing-Ju Cai, Ling-Ling Xu. Approximate Customized Proximal Point Algorithms for Separable Convex Optimization [J]. Journal of the Operations Research Society of China, 2023, 11(2): 383-408. |
[4] | Ying Cui, Chao Ding, Xu-Dong Li, Xin-Yuan Zhao. Augmented Lagrangian Methods for Convex Matrix Optimization Problems [J]. Journal of the Operations Research Society of China, 2022, 10(2): 305-342. |
[5] | De-Ren Han. A Survey on Some Recent Developments of Alternating Direction Method of Multipliers [J]. Journal of the Operations Research Society of China, 2022, 10(1): 1-52. |
[6] | Jun-Feng Yang, Yin Zhang. Local Linear Convergence of an ADMM-Type Splitting Framework for Equality Constrained Optimization [J]. Journal of the Operations Research Society of China, 2021, 9(2): 308-319. |
[7] | Zhong-Ming Wu, Min Li. An LQP-Based Symmetric Alternating Direction Method of Multipliers with Larger Step Sizes [J]. Journal of the Operations Research Society of China, 2019, 7(2): 365-383. |
[8] | Xiang Gao, Yang-Yang Xu, Shu-Zhong Zhang. Randomized Primal–Dual Proximal Block Coordinate Updates [J]. Journal of the Operations Research Society of China, 2019, 7(2): 205-250. |
[9] |
Bing-Sheng He,Ming-Hua Xu,Xiao-Ming Yuan.
Block-Wise ADMM with a Relaxation Factor for Multiple-Block Convex Programming
[J]. Journal of the Operations Research Society of China, 2018, 6(4): 485-506.
|
[10] | Fu-Sheng Bai· Ling Xu. A Partially Parallel Prediction-Correction Splitting Method for Convex Optimization Problems with Separable Structure [J]. Journal of the Operations Research Society of China, 2017, 5(4): 529-544. |
[11] | Nancy Baygorrea, Erik Alex Papa Quiroz, Nelson Maculan. On the Convergence Rate of an Inexact Proximal Point Algorithm for Quasiconvex Minimization on Hadamard Manifolds [J]. Journal of the Operations Research Society of China, 2017, 5(4): 457-467. |
[12] | Feng-Mei Tang · Ping-Liang Huang. On the Convergence Rate of a Proximal Point Algorithm for Vector Function on Hadamard Manifolds [J]. Journal of the Operations Research Society of China, 2017, 5(3): 405-417. |
[13] | Yan-Qin Bai| Kai-Ji Shen. Alternating Direction Method of Multipliers for 11-12-Regularized Logistic Regression Model [J]. Journal of the Operations Research Society of China, 2016, 4(2): 243-. |
[14] | Jun-Kai Feng · Hai-Bin Zhang ·Cao-Zong Cheng· Hui-Min Pei. Convergence Analysis of L-ADMM for Multi-block Linear-Constrained Separable Convex Minimization Problem [J]. Journal of the Operations Research Society of China, 2015, 3(4): 563-. |
[15] | Xue Zhang · Xiao-Qun Zhang. A Note on the Complexity of Proximal Iterative Hard Thresholding Algorithm [J]. Journal of the Operations Research Society of China, 2015, 3(4): 459-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||