[1] Zoroofi, A.R., et al.:Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans. Inform. Technol. B 7(4), 329-334(2004) [2] Prasoon, A., Petersen, K., Igel, C., et al.:Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. MICCAI 246-253(2013) [3] Chu, C., Chen, C., Liu, L., et al.:FACTS:fully automatic CT segmentation of a hip joint. Ann. Biomed. Eng. 43(5), 1247-1259(2015) [4] Chen, F., Liu, J., Zhao, Z., et al.:3D feature-enhanced network for automatic femur segmentation. IEEE J. Biomed. Health 23, 1-1(2017) [5] Du, M., Ding, Y., Jia, Q.:A multi-threshold segmentation method based on ant colony algorithm. ICMV 878402-878409(2013) [6] Xiao, B., Jing, Y., Guan, Y., et al.:A novel automatic thresholding segmentation method with local adaptive thresholds. arXiv preprint, arXiv:1305.5160 [7] Cheng, Y., Zhou, S., Wang, Y., et al.:Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recognit. 46(11), 2969-2984(2013) [8] Adams, R., Bischof, L.:Seeded region growing. IEEE Trans. Pattern Anal. 16(6), 641-647(1994) [9] Lorensen, W.E., Cline, H.E.:Marching cubes:a high resolution 3D surface construction algorithm. Comput. Graph 21(4), 163-169(1987) [10] Neill, G.T., Lee, W., Beaule, P.E.:Segmentation of cam-type femurs from CT scans. Visual Comput. 28(2), 205-218(2012) [11] Xu, C., Prince, J.L.:Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359-369(1998) [12] Ronneberger, O., Fischer, P., Brox, T., et al.:U-Net:Convolutional Networks for Biomedical Image Segmentation. MICCAI 234-241(2015) [13] Zheng, S., Jayasumana, S., Romeraparedes, B., et al.:Conditional random fields as recurrent neural networks. ICCV 1529-1537(2015) [14] Lu, F., Wu, F., Hu, P., et al.:Automatic 3D liver location and segmentation via convolutional neural network and graph cut. CARS 12(2), 171-182(2017) [15] Ghosh, M., Berger, J.:Statistical decision theory and Bayesian analysis. J. Am. Stat. Assoc. 83(401), 266-266(1988) [16] Huang, J., Griffith, J.F., Wang, D., et al.:Graph-cut-based segmentation of proximal femur from computed tomography images with shape prior. J. Med. Biol. Eng. 35(5), 594-607(2015) [17] Chu, C., Bai, J., Wu, X., et al.:MASCG:multi-atlas segmentation constrained graph method for accurate segmentation of hip CT images. Med Image Anal. 26(1), 173-184(2015) [18] Caselles, V., Kimmel, R., Sapiro, G., et al.:Geodesic active contours. ICCV 22(1), 61-79(1995) [19] Chan, T.F., Vese, L.A.:Active contours without edges. IEEE Trans. Image Process. 10(2), 266-277(2001) [20] Li, C., Kao, C., Gore, J.C., et al.:Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940-1949(2008) [21] Wang, L., He, L., Mishra, A., et al.:Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89(12), 2435-2447(2009) [22] Peng, Y., Pi, L., Shen, C.:A semi-automatic method for burn scar delineation using a modified Chan-Vese model. Comput. Geosci. 35(2), 183-190(2009) [23] Peng,Y.,Bao,L.,Pi,L.:Object(s)-of-interestsegmentationforimageswithinhomogeneousintensities based on curve evolution. Neurocomputing 195(3), 13-18(2016) [24] Zhu, S., Yuille, A.L.:Region competition:unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. 18(9), 884-900(1996) [25] Kim, J., Fisher, J.W., Yezzi, A.J., et al.:A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486-1502(2005) [26] Rosenhahn, B., Brox, T., Weickert, J., et al.:Three-dimensional shape knowledge for joint image segmentation and pose tracking. Int. J. Comput. Vis. 73(3), 243-262(2007) [27] Shi, Y., Chen, Z., Qi, Z., et al.:A novel clustering-based image segmentation via density peaks algorithm with mid-level feature. Neural Comput. Appl. 28(1), 29-39(2017) [28] Lim, J.J., Zitnick, C.L., Dollar, P., et al.:Sketch tokens:a learned mid-level representation for contour and object detection. CVPR 3158-3165(2013) [29] Ojala, T., Pietikainen, M., Maenpaa, T.:Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. 24(7), 971-987(2002) [30] Li, C., Xu, C., Gui, C., et al.:Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243-3254(2010) |