Journal of the Operations Research Society of China ›› 2020, Vol. 8 ›› Issue (2): 311-340.doi: 10.1007/s40305-019-00287-4
• Special Issue: Mathematical Optimization: Past, Present and Future • Previous Articles Next Articles
Hai-Miao Zhang, Bin Dong
Received:
2019-06-22
Revised:
2019-11-03
Online:
2020-06-30
Published:
2020-07-07
Contact:
Bin Dong, Hai-Miao Zhang
E-mail:dongbin@math.pku.edu.cn;hmzhang@pku.edu.cn
Supported by:
CLC Number:
Hai-Miao Zhang, Bin Dong. A Review on Deep Learning in Medical Image Reconstruction[J]. Journal of the Operations Research Society of China, 2020, 8(2): 311-340.
[1] Pavlovic, G., Tekalp, A.M.: Maximum likelihood parametric blur identification based on a continuous spatial domain model. IEEE Trans. Image Process. 1(4), 496-504(1992) [2] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417-424. ACM Press/Addison-Wesley Publishing Co. (2000) [3] Brown, R.W., Haacke, E.M., Cheng, Y.C.N., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, Hoboken (2014) [4] Buzug, T.M.: Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, Berlin (2008) [5] Choi, J.K., Park, H.S., Wang, S., Wang, Y., Seo, J.K.: Inverse problem in quantitative susceptibility mapping. SIAM J. Imaging Sci. 7(3), 1669-1689(2014) [6] Natterer, F.: Image reconstruction in quantitative susceptibility mapping. SIAM J. Imaging Sci. 9(3), 1127-1131(2016) [7] de Rochefort, L., Liu, T., Kressler, B., Liu, J., Spincemaille, P., Lebon, V., Wu, J., Wang, Y.: Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn. Reson. Med. 63(1), 194-206(2010) [8] Wang, Y., Liu, T.: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82-101(2015) [9] Rudin, L., Lions, P.L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103-119. Springer, Berlin (2003) [10] Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer, Berlin (2006) [11] Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005) [12] Dong, B., Shen, Z.: Image restoration: a data-driven perspective. In: Proceedings of the International Congress of Industrial and Applied Mathematics (ICIAM), pp. 65-108(2015) [13] Shen, Z.: Wavelet frames and image restorations. In: Proceedings of the International Congress of Mathematicians, vol. 4, pp. 2834-2863. World Scientific (2010) [14] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371-3408(2010) [15] Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer Assisted Intervention Society, pp. 234-241(2015) [16] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 770-778(2016) [17] He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630-645(2016) [18] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259-268(1992) [19] Perona, P., Shiota, T., Malik, J.: Anisotropic diffusion. In: Romeny, B.M.H. (ed.) Geometry-Driven Diffusion in Computer Vision, pp. 73-92. Springer, Berlin (1994) [20] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629-639(1990) [21] Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919-940(1990) [22] Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590-605(1994) [23] Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 60-65(2005) [24] Buades,A.,Coll,B.,Morel,J.M.:Areviewofimagedenoisingalgorithms,withanewone.Multiscale Model. Simul. 4(2), 490-530(2005) [25] Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113-147(2010) [26] Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185-197(2010) [27] Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080-2095(2007) [28] Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) [29] Mallat, S.: A Wavelet Tour of Signal Processing, The Sparse Way, 3rd edn. Academic Press, Burlington, MA (2009) [30] Ron, A., Shen, Z.: Affine systems in l2(Rd): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408-447(1997) [31] Dong, B., Shen, Z.: MRA-based wavelet frames and applications. In: Zhao, H.-K. (ed.) Mathematics in Image Processing. IAS Lecture Notes Series, vol. 19. American Mathematical Society, Providence (2013) [32] Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2862-2869(2014) [33] Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), vol. 5, pp. 2443-2446. IEEE (1999) [34] Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311(2006) [35] Liu, R., Lin, Z., Zhang, W., Su, Z.: Learning PDEs for image restoration via optimal control. In: European Conference on Computer Vision, pp. 115-128. Springer (2010) [36] Cai, J.F., Ji, H., Shen, Z., Ye, G.B.: Data-driven tight frame construction and image denoising. Appl. Comput. Harmon. Anal. 37(1), 89-105(2014) [37] Bao, C., Ji, H., Shen, Z.: Convergence analysis for iterative data-driven tight frame construction scheme. Appl. Comput. Harmon. Anal. 38(3), 510-523(2015) [38] Tai, C., Weinan, E.: Multiscale adaptive representation of signals: I. The basic framework. J. Mach. Learn. Res. 17(1), 4875-4912(2016) [39] Wright,J.,Ganesh,A.,Rao,S.,Peng,Y.,Ma,Y.:Robustprincipalcomponentanalysis:exactrecovery of corrupted low-rank matrices via convex optimization. In: Neural Information Processing Systems, pp. 2080-2088(2009) [40] Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171-184(2013) [41] Cai, J.F., Jia, X., Gao, H., Jiang, S.B., Shen, Z., Zhao, H.: Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study. IEEE Trans. Med. Imaging 33(8), 1581-1591(2014) [42] Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717(2009) [43] Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956-1982(2010) [44] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577-685(1989) [45] Cai, J.F., Dong, B., Shen, Z.: Image restoration: a wavelet frame based model for piecewise smooth functions and beyond. Appl. Comput. Harmon. Anal. 41(1), 94-138(2016) [46] Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543-563(2009) [47] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1097-1105(2012) [48] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Neural Information Processing Systems, pp. 2672-2680(2014) [49] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122(2011) [50] Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40(1976) [51] Glowinski, R., Marroco, A.: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique 9(R2), 41-76(1975) [52] Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, vol. 34(2008) [53] Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015-1046(2010) [54] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120-145(2011) [55] Cai, J.F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337-369(2009) [56] Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323-343(2009) [57] Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143-168(2008) [58] Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93-111(2010) [59] Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413-1457(2004) [60] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202(2009) [61] Bruck Jr., R.E.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61(1), 159-164(1977) [62] Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383-290(1979) [63] Shen, Z., Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM J. Imaging Sci. 4(2), 573-596(2011) [64] Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad. Nauk SSSR 269, 543-547(1983) [65] Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006) [66] Bottou,L.:Large-scalemachinelearningwithstochasticgradientdescent.In:ProceedingsofCOMPSTAT, pp. 177-186. Springer (2010) [67] Robbins,H.,Monro,S.:Astochasticapproximationmethod.Ann.Math.Stat. 22(3),400-407(1951) [68] Bottou, L.: Stochastic gradient descent tricks. In: Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade, pp. 421-436. Springer, Berlin (2012) [69] Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: International Conference on Machine Learning, pp. 116-123. ACM (2004) [70] Nitanda, A.: Stochastic proximal gradient descent with acceleration techniques. In: Neural Information Processing Systems, pp. 1574-1582(2014) [71] Zhang, Y., Xiao, L.: Stochastic primal-dual coordinate method for regularized empirical risk minimization. J. Mach. Learn. Res. 18(1), 2939-2980(2017) [72] Konečnỳ, J., Liu, J., Richtárik, P., Takáč, M.: Mini-batch semi-stochastic gradient descent in the proximal setting. IEEE J. Sel. Top. Signal Process. 10(2), 242-255(2016) [73] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (2015) [74] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121-2159(2011) [75] Hinton, G.: Neural networks for machine learning. Coursera, video lectures (2012) [76] Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223-311(2018) [77] Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: International Conference on Machine Learning, pp. 399-406(2010) [78] Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5261-5269(2015) [79] Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. In: Neural Information Processing Systems, pp. 10-18(2016) [80] Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322-1332(2018) [81] Solomon, O., Cohen, R., Zhang, Y., Yang, Y., Qiong, H., Luo, J., van Sloun, R.J., Eldar, Y.C.: Deep unfolded robust PCA with application to clutter suppression in ultrasound. arXiv preprint arXiv:1811.08252(2018) [82] Chen,X.,Liu,J.,Wang,Z.,Yin,W.:TheoreticallinearconvergenceofunfoldedISTAanditspractical weights and thresholds. In: Neural Information Processing Systems, pp. 9079-9089(2018) [83] Liu, R., Cheng, S., He, Y., Fan, X., Lin, Z., Luo, Z.: On the convergence of learning-based iterative methods for nonconvex inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https:// doi.org/10.1109/TPAMI.2019.2920591 [84] Li, H., Yang, Y., Chen, D., Lin, Z.: Optimization algorithm inspired deep neural network structure design. In: Asian Conference on Machine Learning, pp. 614-629(2018) [85] Zhang, H., Dong, B., Liu, B.: JSR-Net: a deep network for joint spatial-radon domain CT reconstruction from incomplete data. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)-2019, pp. 3657-3661(2019). https://doi.org/10.1109/ICASSP.2019.8682178 [86] Weinan, E.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5(1), 1-11(2017) [87] Chang, B., Meng, L., Haber, E., Tung, F., Begert, D.: Multi-level residual networks from dynamical systems view. In: International Conference on Learning Representations Poster (2018) [88] Li, Z., Shi, Z.: Deep residual learning and PDEs on manifold. arXiv:1708.05115(2017) [89] Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible architectures for arbitrarily deep residual neural networks. In: AAAI Conference on Artificial Intelligence (2018) [90] Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In: International Conference on Machine Learning, pp. 3276-3285(2018) [91] Wang, B., Yuan, B., Shi, Z., Osher, S.J.: Enresnet: Resnet ensemble via the Feynman-Kac formalism. arXiv:1811.10745(2018) [92] Ruthotto, L., Haber, E.: Deep neural networks motivated by partial differential equations. arXiv:1804.04272(2018) [93] Tao, Y., Sun, Q., Du, Q., Liu, W.: Nonlocal neural networks, nonlocal diffusion and nonlocal modeling. In: Neural Information Processing Systems, pp. 494-504. Curran Associates, Inc. (2018) [94] Zhang, D., Zhang, T., Lu, Y., Zhu, Z., Dong, B.: You only propagate once: accelerating adversarial training via maximal principle. In: Neural Information Processing Systems (2019) [95] Zhang, X., Lu, Y., Liu, J., Dong, B.: Dynamically unfolding recurrent restorer: a moving endpoint control method for image restoration. In: International Conference on Learning Representations (2019) [96] Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-Net: learning PDEs from data. In: International Conference on Machine Learning, pp. 3214-3222(2018) [97] Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 339, 108925(2019) [98] Lu, Y., Li, Z., He, D., Sun, Z., Dong, B., Qin, T., Wang, L., Liu, T.Y.: Understanding and improving transformer from a multi-particle dynamic system point of view. arXiv:1906.02762(2019) [99] He, J., Xu, J.: MgNet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62, 1331-1354(2019) [100] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 4700-4708(2017) [101] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Neural Information Processing Systems, pp. 153-160(2007) [102] Poultney, C., Chopra, S., Cun, Y.L., et al.: Efficient learning of sparse representations with an energybased model. In: Neural Information Processing Systems, pp. 1137-1144(2007) [103] Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481-2495(2017) [104] Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Neural Information Processing Systems, pp. 2802-2810(2016) [105] Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., Zhou, J., Wang, G.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524-2535(2017) [106] Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV), pp. 565-571. IEEE (2016) [107] Yin, R., Gao, T., Lu, Y.M., Daubechies, I.: A tale of two bases: local-nonlocal regularization on image patches with convolution framelets. SIAM J. Imaging Sci. 10(2), 711-750(2017) [108] Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imaging Sci. 11(2), 991-1048(2018) [109] Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67-70(2019) [110] DeVore, R., Lorentz, G.: Constructive Approximation. Springer, Berlin (1993) [111] Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251-257(1991) [112] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359-366(1989) [113] Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143-195(1999) [114] Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signal Syst. 2(4), 303-314(1989) [115] Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2(3), 183-192(1989) [116] Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930-945(1993) [117] Liang, S., Srikant, R.: Why deep neural networks for function approximation? In: International Conference on Learning Representations (2017) [118] Mhaskar, H., Liao, Q., Poggio, T.: Learning functions: when is deep better than shallow. arXiv:1603.00988(2016) [119] Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In: Conference on Learning Theory, pp. 907-940(2016) [120] Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a tensor analysis. In: Conference on Learning Theory, pp. 698-728(2016) [121] Delalleau,O.,Bengio,Y.:Shallowvs.deepsum-productnetworks.In:NeuralInformationProcessing Systems, pp. 666-674(2011) [122] Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv:1509.08101(2015) [123] Telgarsky, M.: Benefits of depth in neural networks. In: Conference on Learning Theory, vol. 49, pp. 1-23(2016) [124] Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: a view from the width. In: Neural Information Processing Systems, pp. 6231-6239(2017) [125] Hanin, B., Sellke, M.: Approximating continuous functions by ReLU nets of minimal width. arXiv:1710.11278(2017) [126] Hanin, B.: Universal function approximation by deep neural nets with bounded width and ReLU activations. Mathematics 7(10), 992(2019) [127] Yarotsky, D.: Optimal approximation of continuous functions by very deep ReLU networks. In: Conference on Learning Theory (2018) [128] Rolnick, D., Tegmark, M.: The power of deeper networks for expressing natural functions. In: International Conference on Learning Representations (2018) [129] Shen, Z., Yang, H., Zhang, S.: Nonlinear approximation via compositions. Neural Netw. 119, 74-84(2019) [130] Veit, A., Wilber, M.J., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. In: Neural Information Processing Systems, pp. 550-558(2016) [131] Lin, H., Jegelka, S.: ResNet with one-neuron hidden layers is a universal approximator. In: Neural Information Processing Systems, pp. 6172-6181(2018) [132] E, W., Ma, C., Wang, Q.: A priori estimates of the population risk for residual networks (2019) [133] He, J., Li, L., Xu, J., Zheng, C.: ReLU deep neural networks and linear finite elements. arXiv:1807.03973(2018) [134] Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Naldi, G., Russo, G. (eds.) Multiscale and Adaptivity: Modeling, Numerics and Applications, pp. 125-225. Springer, Berlin (2011) [135] Cessac,B.:Aviewof neuralnetworksasdynamicalsystems.Int.J.Bifurc.Chaos 20(06),1585-1629(2010) [136] Sonoda, S., Murata, N.: Double continuum limit of deep neural networks. In: ICML Workshop (2017) [137] Thorpe, M., van Gennip, Y.: Deep limits of residual neural networks. arXiv:1810.11741(2018) [138] Weinan, E., Han, J., Li, Q.: A mean-field optimal control formulation of deep learning. Res. Math. Sci. 6(10), 1-41(2019). https://doi.org/10.1007/s40687-018-0172-y [139] Li, Q., Chen, L., Tai, C., Weinan, E.: Maximum principle based algorithms for deep learning. J. Mach. Learn. Res. 18(1), 5998-6026(2017) [140] Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Neural Information Processing Systems, pp. 6572-6583(2018) [141] Zhang, X., Li, Z., Loy, C.C., Lin, D.: Polynet: a pursuit of structural diversity in very deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3900-3908(2017) [142] Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: ultra-deep neural networks without residuals. In: International Conference on Learning Representations (2016) [143] Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing activations. In: Neural Information Processing Systems, pp. 2214-2224(2017) [144] Zhang, J., Han, B., Wynter, L., Low, K.H., Kankanhalli, M.: Towards robust ResNet: a small step but a giant leap. In: International Joint Conference on Artificial Intelligence, pp. 4285-4291(2019) [145] Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, vol. 61. SIAM, Philadelphia (1998) [146] Zhu, M., Chang, B., Fu, C.: Convolutional neural networks combined with Runge-Kutta methods. arXiv:1802.08831(2018) [147] Warming, R., Hyett, B.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14(2), 159-179(1974) [148] Su, W., Boyd, S., Candès, E.: A differential equation for modeling Nesterov's accelerated gradient method: theory and insights. In: Neural Information Processing Systems, pp. 2510-2518(2014) [149] Wilson, A.C., Recht, B., Jordan, M.I.: A Lyapunov analysis of momentum methods in optimization. arXiv:1611.02635(2016) [150] Dong, B., Jiang, Q., Shen, Z.: Image restoration: wavelet frame shrinkage, nonlinear evolution PDEs, and beyond. Multiscale Model. Simul. 15(1), 606-660(2017) [151] Gastaldi, X.: Shake-shake regularization. In: International Conference on Learning Representations Workshop (2017) [152] Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: European Conference on Computer Vision, pp. 646-661(2016) [153] Sun, Q., Tao, Y., Du, Q.: Stochastic training of residual networks: a differential equation viewpoint. arXiv preprint arXiv:1812.00174(2018) [154] Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001) [155] Zeng, G.L.: Medical Image Reconstruction: A Conceptual Tutorial. Springer, Berlin (2010) [156] Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging, 2nd edn. Springer, New York (2015) [157] Herman,G.T.:FundamentalsofComputerizedTomography:ImageReconstructionfromProjections. Springer, Berlin (2009) [158] Zhu,B.,Liu,J.Z.,Cauley,S.F.,Rosen,B.R.,Rosen,M.S.:Imagereconstructionbydomain-transform manifold learning. Nature 555(7697), 487(2018) [159] Kalra, M., Wang, G., Orton, C.G.: Radiomics in lung cancer: its time is here. Med. Phys. 45(3), 997-1000(2018) [160] Wu, D., Kim, K., Dong, B., El Fakhri, G., Li, Q.: End-to-end lung nodule detection in computed tomography. In: International Workshop on Machine Learning in Medical Imaging, pp. 37-45. Springer (2018) [161] Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets high-level vision tasks: a deep learning approach. In: International Joint Conference on Artificial Intelligence, pp. 842-848(2018) [162] Liu, D., Wen, B., Jiao, J., Liu, X., Wang, Z., Huang, T.S.: Connecting image denoising and high-level vision tasks via deep learning. arXiv preprint arXiv:1809.01826(2018) [163] Zhang, Z., Liang, X., Dong, X., Xie, Y., Cao, G.: A sparse-view CT reconstruction method based on combination of densenet and deconvolution. IEEE Trans. Med. Imaging 37(6), 1407-1417(2018) [164] Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., Kalra, M.K., Zhang, Y., Sun, L., Wang, G.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348-1357(2018) [165] Jin, K.H., Mccann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509-4522(2017) [166] Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv preprint arXiv:1611.06391(2016) [167] Liu, J., Chen, X., Wang, Z., Yin, W.: ALISTA: Analytic weights are as good as learned weights in International Conference on Learning Representations. In: ICLR (2019) [168] Xie, X., Wu, J., Zhong, Z., Liu, G., Lin, Z.: Differentiable linearized ADMM. In: International Conference on Machine Learning (2019) [169] Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-Net: a deep learning approach for compressive sensing MRI. arXiv preprint arXiv:1705.06869(2017) [170] Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends® Optim. 1(3), 127-239(2014) [171] Adler,J.,Öktem,O.:Solvingill-posedinverseproblemsusingiterativedeepneuralnetworks.Inverse Probl. 33, 124007(2017) [172] Dong, B., Li, J., Shen, Z.: X-ray CT image reconstruction via wavelet frame based regularization and radon domain inpainting. J. Sci. Comput. 54(2), 333-349(2013) [173] Burger, M., Müller, J., Papoutsellis, E., Schönlieb, C.B.: Total variation regularization in measurement and image space for PET reconstruction. Inverse Probl. 30(10), 105003(2014) [174] Zhan, R., Dong, B.: CT image reconstruction by spatial-radon domain data-driven tight frame regularization. SIAM J. Imaging Sci. 9(3), 1063-1083(2016) [175] Zhang, H., Dong, B., Liu, B.: A reweighted joint spatial-radon domain CT image reconstruction model for metal artifact reduction. SIAM J. Imaging Sci. 11(1), 707-733(2018) |
[1] | Ruo-Yu Sun. Optimization for Deep Learning: An Overview [J]. Journal of the Operations Research Society of China, 2020, 8(2): 249-294. |
[2] | JinWang · Jian-Feng Cai. Data-Driven Tight Frame for Multi-channel Images and Its Application to Joint Color-Depth Image Reconstruction [J]. Journal of the Operations Research Society of China, 2015, 3(2): 99-. |
[3] | Xiao-Jing Ye. Distributed and Consensus Optimization for Non-smooth Image Reconstruction [J]. Journal of the Operations Research Society of China, 2015, 3(2): 117-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||