Journal of the Operations Research Society of China ›› 2020, Vol. 8 ›› Issue (1): 1-28.doi: 10.1007/s40305-019-00286-5
Yong Xia
Received:
2019-01-31
Revised:
2019-05-24
Online:
2020-03-30
Published:
2020-02-18
Contact:
Yong Xia
E-mail:yxia@buaa.edu.cn
CLC Number:
Yong Xia. A Survey of Hidden Convex Optimization[J]. Journal of the Operations Research Society of China, 2020, 8(1): 1-28.
[1] Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.:NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137, 453-476(2013) [2] Hendrickx, J.M., Olshevsky, A.:Matrix p-norms are NP-hard to approximate if p ≠1, 2,∞. SIAM J. Matrix Anal. Appl. 31(5), 2802-2812(2009) [3] Burer, S.:On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479-495(2009) [4] Murty, K.G., Kabdai, S.N.:Some NP-complete problems in quadratic and linear programming. Math. Program. 39, 117-129(1987) [5] Ben-Tal, A., Teboulle, M.:Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72, 51-63(1996) [6] Horst, R.:On the convexification of nonlinear programming problems:an applications-oriented survey. Eur. J. Oper. Res. 15, 382-392(1984) [7] Li, D., Wu, Z.Y., Lee, H.W.J., Yang, X.M., Zhang, L.S.:Hidden convex minimization. J. Global Optim. 31, 211-233(2005) [8] Wu, Z.Y., Li, D., Zhang, L.S., Yang, X.M.:Peeling off a nonconvex cover of an actual convex problem:hidden convexity. SIAM J. Optim. 18(2), 507-536(2007) [9] Xia, Y., Sun, X.L., Li, D., Zheng, X.J.:On the reduction of duality gap in box constrained nonconvex quadratic program. SIAM J. Optim. 21(3), 706-729(2011) [10] Lasdon, L.S.:Optimization Theory for Large Systems. Macmillan Company, London (2006) [11] Li, D.:Zero duality gap for a class of nonconvex optimization problems. J. Optim. Theory Appl. 85(2), 309-324(1995) [12] Li, D., Sun, X.L.:Towards strong duality in integer programming. J. Global Optim. 35(2), 255-282(2006) [13] Li, T.,Wang, Y., Liang, Z., Pardalos, P.M.:Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Global Optim. 38, 405-419(2007) [14] Li, D., Sun, X.L., Biswal, M.P., Gao, F.:Convexification, concavification and monotonization in global optimization. Ann. Oper. Res. 105, 213-226(2001) [15] Xia, Y., Li, D.:Strong duality in optimization:shifted power reformulation. Optim. Method Softw. 31(4), 720-736(2016) [16] Sun, P., Freund, R.M.:Computation of minimum-volume covering ellipsoids. Oper. Res. 52(5), 690-706(2004) [17] Konno, H., Kuno, T.:Multiplicative programming problems. In:Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 369-405. Kluwer Academic Publishers, Dordrecht (1995) [18] Matsui, T.:NP-hardness of linear multiplicative programming and related problems. J. GlobalOptim. 9, 113-119(1996) [19] Duffin, R., Peterson, E., Zener, C.:Geometric Programming:Theory and Application. Wiley, New York (1967) [20] Charnes, A., Cooper,W.W.:Programming with linear fractional functionals. Nav. Res. Logist. Q. 9, 181-186(1962) [21] Schaible, S.:Parameter-free convex equivalent and dual programs of fractional programming problems. Zeitschrift für Oper. Res. 18, 187-196(1974) [22] Carosi, L., Martein, L.:A sequential method for a class of pseudoconcave fractional problems. Cent. Eur. J. Oper. Res. 16, 153-164(2008) [23] Fakhri, A., Ghatee, M.:Minimizing the sum of a linear and a linear fractional function applying conic quadratic representation:continuous and discrete problems. Optimization 65(5), 1023-1038(2016) [24] Gay, D.M.:Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2(2), 186-197(1981) [25] Yuan, Y.:Recent advances in trust region algorithms. Math. Program. 151, 249-281(2015) [26] Golub, G.H., VonMatt, U.:Quadratically constrained least squares and quadratic problems. Numer. Math. 59, 561-580(1991) [27] Martínez, J.M.:Local minimizers of quadratic function on Euclidean balls and spheres. SIAM J. Optim. 4, 159-176(1994) [28] Stern, R.J., Wolkowicz, H.:Indefinite trust region subproblems and nonsymmetric perturbations. SIAM J. Optim. 5(2), 286-313(1995) [29] Hsia, Y., Sheu, R.-L., Yuan, Y.:Theory and application of p-regularized subproblems for p>2. Optim. Method Softw. 32(5), 1059-1077(2017) [30] Loiola, E.M., Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.:An analytical survey for the quadratic assignment problem. Eur. J. Oper. Res. 176, 657-690(2007) [31] Finke, G., Burkard, R.E., Rendl, F.:Quadratic assignment problems. Ann. Discrete Math. 31, 61-82(1987) [32] Rendle, F., Wolkowicz, H.:Applications of parametric programming and eigenvalue maximazation to the quadratic assignment problem. Math. Program. 53, 63-78(1992) [33] Anstreicher, K.M., Chen, X., Wolkowicz, H., Yuan, Y.:Strong duality for a trust-region type relaxation of the quadratic assignment problem. Linear Algebra Appl. 301(1-3), 121-136(1999) [34] Xia, Y.:Global Optimization of a class of nonconvex quadratically constrained quadratic programming problems. Acta. Math. Sin. 27(9), 1803-1812(2011) [35] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.:Nonlinear Programming:Theory and Algorithms, 2nd edn. Wiley, New York (1993) [36] Barvinok, A.I.:Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10, 1-13(1993) [37] Pong, T.K., Wolkowicz, H.:Generalizations of the trust region subproblem. Comput. Optim. Appl. 58(2), 273-322(2014) [38] Beck, A., Pan, D.:On the solution of the GPS localization and circle fitting problems. SIAM J. Optim. 22(1), 108-134(2012) [39] Wang, S., Xia, Y.:Strong duality for generalized trust region subproblem:S-lemma with interval bounds. Optim. Lett. 9(6), 1063-1073(2015) [40] Pólik, I., Terlaky, T.:A survey of the S-Lemma. SIAM Rev. 49(3), 371-418(2007) [41] Xia, Y.,Wang, S., Sheu, R.L.:S-lemma with equality and its applications.Math. Program. 156(1-2), 513-547(2016) [42] Ben-Tal, A., den Hertog, D.:Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. 143(1-2), 1-29(2014) [43] Jiang, R., Li, D., Wu, B.:SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices. Math. Program. 169(2), 531-563(2018) [44] Polyak, B.T.:Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99(3), 553-583(1998) [45] Xia, Y., Xing, W.:Parametric Lagrangian dual for the binary quadratic programming problem. J. Global Optim. 61(2), 221-233(2015) [46] Beck, A., Eldar, Y.C.:Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844-860(2006) [47] Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.:Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2(1), 71-109(1998) [48] Wolkowicz, H.:A note on lack of strong duality for quadratic problems with orthogonal constraints. Eur. J. Oper. Res. 143(2), 356-364(2002) [49] Anstreicher, K.M.,Wolkowicz, H.:On lagrangian relaxation of quadratic matrix constraints. SIAM J. Matrix Anal. Appl. 22, 41-55(2000) [50] Ding, Y., Ge, D., Wolkowicz, H.:On equivalence of semidefinite relaxations for quadratic matrix programming. Math. Oper. Res. 36(1), 88-104(2011) [51] Shor, N.Z.:Nondifferentiable Optimization and Polynomial Problems. Springer, Dordrecht (1998) [52] Motzkin, T.S., Straus, E.G.:Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533-540(1965) [53] Xia, Y., Sheu, R.L., Sun, X., Li, D.:Tightening a copositive relaxation for standard quadratic optimization problems. Comput. Optim. Appl. 55, 379-398(2013) [54] Anstreicher, K.M., Burer, S.:Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124, 33-43(2010) [55] Schaible, S.:Fractional programming I:duality. Manag. Sci. 22(8), 858-867(1976) [56] Beck, A., Teboulle, M.:A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid. Math. Program. 118, 13-35(2009) [57] Nguyen, V.-B., Sheu, R.-L., Xia, Y.:An SDP approach for quadratic fractional problems with a two-sided quadratic constraint. Optim. Method Softw. 31(4), 701-719(2016) [58] Yang, M., Xia, Y.:On Lagrangian duality gap of quadratic fractional programming with a two-sided quadratic constraint. Optim. Lett. https://doi.org/10.1007/s11590-018-1320-4(2018) [59] Beck, A., Ben-Tal, A., Teboulle, M.:Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28, 425-445(2006) [60] Xia, Y.:Convex hull of the orthogonal similarity set with applications in quadratic assignment problems. J. Ind. Manag. Optim. 9(3), 687-699(2013) [61] Beck, A.:Quadratic matrix programming. SIAM J. Optim. 17, 1224-1238(2006) [62] Pataki, G.:The geometry of semidefinite programming. In Handbook of Semidefinite Programming. In:International Series in Operations Research andManagement Science, vol. 27, pp. 29-65. Kluwer Academic Publishers, Boston, (2000) [63] Beck, A., Ben-Tal, A.:On the solution of the Tikhonov regularization of the total least squares problem. SIAM J. Optim. 17(1), 98-118(2006) [64] Yang, M., Xia, Y., Wang, J., Peng, J.:Efficiently solving total least squares with tikhonov identical regularization. Comput. Optim. Appl. 70(2), 571-592(2018) [65] Flippo, O.E., Jansen, B.:Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid. Eur. J. Oper. Res. 94, 167-178(1996) [66] Wang, J., Xia, Y.:A linear-time algorithm for the trust region subproblem based on hidden convexity. Optim. Lett. 11(8), 1639-1646(2017) [67] Nam, H.N., Kılınç-Karzan, F.:A second-order cone based approach for solving the trust-region subproblem and its variants. SIAM J. Optim. 27(3), 1485-1512(2017) [68] Hazan, E., Koren, T.:A linear-time algorithm for trust region problems. Math. Program. 158(1), 363-381(2016) [69] Yamada, S., Takeda, A.:Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization. J. Glob. Optim. 71(2), 313-339(2018) [70] Haines, S., Loeppky, J., Tseng, P.,Wang, X.:Convex relaxations of the weighted maxmin dispersion problem. SIAM J. Optim. 23, 2264-2294(2013) [71] Wang, S., Xia, Y.:On the ball-constrained weighted maximin dispersion problem. SIAM J. Optim. 26(3), 1565-1588(2016) [72] Rendle, F.,Wolkowicz, H.:A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program. 77(2), 273-299(1997) [73] Pataki, G.:On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23(2), 339-358(1998) [74] Sturm, J.F., Zhang, S.:On cones of nonnegative quadratic functions.Math.Oper. Res. 28(2), 246-267(2003) [75] Ye, Y., Zhang, S.:New results on quadratic minimization. SIAM J. Optim. 14(1), 245-267(2003) [76] Guo, X., Deng, Z., Fang, S.-C., Wang, Z., Xing, W.:Quadratic optimization over a second-order cone with linear equality constraints. J. Oper. Res. Soc. China 2(1), 17-38(2014) [77] Burer, S., Anstreicher, K.M.:Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432-451(2013) [78] Burer, S., Yang, B.:The trust-region subproblem with non-intersecting linear constraints. Math. Program. 149(1-2), 253-264(2015) [79] Burer, S., Kılınç-Karzan, F.:How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1-2), 393-429(2017) [80] Dai, J., Fang, S.-C., Xing,W.:Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2018117(2019) [81] Beck, A., Drori, Y., Teboulle, M.:A new semidefinite programming relaxation scheme for a class of quadratic matrix problems. Oper. Res. Lett. 40, 298-302(2012) [82] Lemon, A., So, A.M.-C., Ye, Y.:Low-rank semidefinite programming:theory and applications. Found. Trends Optim. 2(1-2), 1-156(2016) [83] Liu, Y.F., Hong, M.Y., Dai, Y.H.:Max-min fairness linear transceiver design problem for a multiuser simo interference channel is polynomial time solvable. IEEE Signal Process. Lett. 20(1), 27-30(2013) [84] Yang, B., Anstreicher, K., Burer, S.:Quadratic programs with hollows. Math. Program. 170(2), 541-553(2018) [85] Bienstock, D.:Anote on polynomial solvability of theCDTproblem. SIAMJ.Optim. 26(1), 488-498(2016) [86] Consolini, L., Locatelli, M.:On the complexity of quadratic programming with two quadratic constraints. Math. Program. 164(1-2), 91-128(2017) [87] Sakaue, S., Nakatsukasa, Y., Takeda, A., Iwata, S.:Solving generalized CDT problems via twoparameter eigenvalues. SIAM J. Optim. 26(3), 1669-1694(2016) [88] Bienstock, D., Michalka, A.:Polynomial solvability of variants of the trust-region subproblem. In:ACM-SIAM Symposium on Discrete Algorithms, pp. 380-390. (2014) [89] Hsia,Y., Sheu, R.-L.:TrustRegion Subproblem with a Fixed Number of Additional Linear Inequality Constraints has Polynomial Complexity. arXiv:1312.1398(2013) [90] Schonemann, P.H.:A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1-10(1966) [91] Dodig, M., Stošić, M., Xavier, J.:On minimizing a quadratic function on a Stiefel manifold. Linear Algebra Appl. 475, 251-264(2015) [92] Zhang, L.H.:On a self-consistent-field-like iteration for maximizing the sum of the Rayleigh quotients. J. Comput. Appl. Math. 257, 14-28(2014) [93] Wang, L.,Xia,Y.:Alinear-time algorithm for globally maximizing the sum of a generalized Rayleigh quotient and a quadratic form on the unit sphere. SIAM J. Optim. 29(3), 1844-1869(2019) [94] Hiriart-Urruty, J.B.:Potpourri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 49, 255-273(2007) [95] Zhao,Y.B.:The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms. SIAM J. Matrix Anal. Appl. 31(4), 1792-1811(2010) [96] Xia, Y.:A note on Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms. J. Oper. Res. Soc. China 1(3), 333-338(2013) [97] Nesterov, Y.:Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003/71(2003) [98] Xia, Y.:On local convexity of quadratic transformations. J. Oper. Res. Soc. China 2, 341-350(2014) [99] Beck, A.:On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of ball. J. Global Optim. 39(1), 113-126(2007) [100] Beck, A.:Convexity properties associated with nonconvex quadratic matrix functions and applications to quadratic programming. J. Optim. Theory Appl. 142(1), 1-29(2009) |
[1] |
Bing-Sheng He,Ming-Hua Xu,Xiao-Ming Yuan.
Block-Wise ADMM with a Relaxation Factor for Multiple-Block Convex Programming
[J]. Journal of the Operations Research Society of China, 2018, 6(4): 485-506.
|
[2] |
Murat Adivar, Shu-Cherng Fang.
|
[3] | Wei Zhu, Cai-Hong Zhang, Qian Liu, Shu-Shang Zhu. Incorporating Convexity in Bond Portfolio Immunization Using Multifactor Model: A Semidefinite Programming Approach [J]. Journal of the Operations Research Society of China, 2018, 6(1): 3-23. |
[4] | Hou-Duo Qi. Conditional Quadratic Semidefinite Programming:Examples and Methods [J]. Journal of the Operations Research Society of China, 2014, 2(2): 143-170. |
[5] | Yuan-Yuan Huang · San-Yang Liu. Proximal-Based Pre-correction Decomposition Method for Structured Convex Minimization Problems [J]. Journal of the Operations Research Society of China, 2014, 2(2): 223-236. |
[6] | Xiao-ling Guo · Zhi-bin Deng · Shu-Cherng Fang · Zhen-boWang ·Wen-xun Xing. Quadratic Optimization over a Second-Order Cone with Linear Equality Constraints [J]. Journal of the Operations Research Society of China, 2014, 2(1): 17-38. |
[7] | Jia-Wang Nie. An Approximation Bound Analysis for Lasserre’s Relaxation in Multivariate Polynomial Optimization [J]. Journal of the Operations Research Society of China, 2013, 1(3): 313-332. |
[8] | Shi-qian Ma. Alternating Direction Method of Multipliers for Sparse Principal Component Analysis [J]. Journal of the Operations Research Society of China, 2013, 1(2): 253-. |
[9] | Xiao-Ling Sun · Xiao-Jin Zheng · Duan Li. Recent Advances in Mathematical Programming with Semi-continuous Variables and Cardinality Constraint [J]. Journal of the Operations Research Society of China, 2013, 1(1): 55-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||