[1] Bondy, J.A., Murty, U.S.R.:Graph Theory with Application. Elsevier, New York (1976) [2] Klein, L.B., Hall, L.H.:Molecular Connectivity in Structure Activity Analysis. Research Studies Press. Wiley, Chichester (1986) [3] Kier, L.B., Hall, L.H.:The nature of structure-activity relationships and their relation to molecular connectivity. Eur. J. Med. Chem. 12, 307-312(1977) [4] Chartrand, G.:A graph-theoretic approach to a communications problem. SIAM J. Appl. Math. 14, 778-781(1966) [5] Lesniak, L.:Results on the edge-connectivity of graphs. Discrete Math. 8, 351-354(1974) [6] Dankelmann, P., Hellwig, A., Volkmann, L.:Inverse degree ang edge-connectivity. Discrete Math. 309, 2943-2947(2009) [7] Chen, Z., Guifu, S., Volkmann, L.:Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected graphs. Discrete Appl. Math. 218, 64-70(2017) [8] Bauer, D., Boesch, F.T., Suffel, C., Tindell, R.:Connectivity extremal problems and the design of reliable probabilistic networks. The Theory and Application of Graphs, pp. 45-54. Wiley, New York (1981) [9] Boesch, F.:On unreliability polynomials and graph connectivity in reliable network synthesis. J. Graph Theory 10, 339-352(1986) [10] Kelmans, A.K.:Asymptotic formulas for the probability of k-connectedness of random graphs. Theory Probab. Appl. 17, 243-254(1972) [11] Fiol, M.A.:On super-edge-connected digraphs and bipartite digraphs. J. Graph Theory 16, 545-555(1992) [12] Soneoka, T.:Super-edge-connectivity of dense digraphs and graphs. Discrete Appl. Math. 37/38, 511-523(1992) [13] Tian, Y., Guo, L., Meng, J., Qin, C.:Inverse degree and super edge-connectivity. Int. J. Comput. Math. 89(6), 752-759(2012) [14] Lin, A., Luo, R., Zha, X.:On sharp bounds of the zeroth-order general Randić index of certain unicyclic graphs. Appl. Math. Lett. 22, 585-589(2009) [15] Su, G., Xiong, L., Su, X., Li, G.:Maximally edge-connected graphs and zeroth-order general Randić index for α -1. J. Comb. Optim. 31, 182-195(2016) [16] Dankelmann, P., Volkmann, L.:New sufficient conditions for equality of minimum degree and edgeconnectivity. Arc Comb. 40, 270-278(1995) [17] Turán, P.:Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapook 48, 436-452(1941) [18] Dankelmann, P., Volkmann, L.:Degree sequence condition for maximally edge-connected graphs depending on the clique number. Discrete Math. 211, 217-223(2000) [19] Plesník, L., Znám, S.:On equality of edge-connectivity and minimum degree of a graph. Arch. Math. 25, 19-25(1989) [20] Dankelmann, P., Volkmann, L.:Degree sequence condition for maximally edge-connected graphs and digraphs. J. Graph Theory 26, 27-34(1997) |