[1] Bard, J.F.:Practical Bilevel Optimization:Algorithms and Applications. Kluwer Academic, Dordrecht (1998) [2] Dempe, S.:Foundations of Bilevel Programming. Nonconvex Optimization and its Applications Series. Kluwer Academic, Dordrecht (2002) [3] Zhang, G., Lu, J., Gao, Y.:Multi-level Decision Making:Models, Methods and Applications. Springer, Berlin (2015) [4] Colson, B., Marcotte, P., Savard, G.:An overview of bilevel optimization. Ann. Oper. Res. 153, 235-256(2007) [5] Dempe, S.:Annotated bibliography on bilevel programming and mathematical problems with equilibrium constraints. Optimization 52, 333-359(2003) [6] Lu, J., Han, J.L., Hu, Y.G., Zhang, G.:Multilevel decision-making:a survey. In. Sci. 346-347, 463-487(2016) [7] Zhang, G.Q., Han, J.L., Lu, J.:Fuzzy bi-level decision-making techniques:a survey. Int. J. Comput. Intell. Syst. 9, 25-34(2016) [8] Campêlo, M., Dantas, S., Scheimberg, S.:A note on a penalty function approach for solving bilevel linear programs. J. Glob. Optim. 16, 245-255(2000) [9] White, D.J., Anandalingam, G.:A penalty function approach for solving bilevel linear programs. J. Glob. Optim. 3, 397-419(1993) [10] Liu, G.S., Han, J.Y., Zhang, J.Z.:Exact penalty functions for convex bilevel programming problems. J. Optim. Theory Appl. 110, 621-643(2001) [11] Ankhili, Z., Mansouri, A.:An exact penalty on bilevel programs with linear vector optimization lower level. Eur. J. Oper. Res. 197, 36-41(2009) [12] Bonnel, H., Morgan, J.:Semivectorial bilevel optimization problem:penalty approach. J. Optim. Theory Appl. 131, 365-382(2006) [13] Ren, A., Wang, Y.:A novel penalty function method for semivectorial bilevel programming problem. Appl. Math. Model. 1, 135-149(2016) [14] Zheng, Y., Zhang, G., Han, J., Lu, J.:Pessimistic bilevel optimization model for risk-averse production-distribution planning. Inf. Sci. 372, 677-689(2016) [15] Marcotte, P., Zhu, D.L.:Exact and inexact penalty methods for the generalized bilevel programming problem. Math. Program. 74, 141-157(1996) [16] Ye, J.J., Zhu, D.L., Zhu, Q.J.:Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481-507(1997) [17] Burke, J.V.:An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968-998(1991) [18] Mauricio, D., Maculan, N.:A boolean penalty method for zero-one nonlinear programming. J. Glob. Optim. 16, 343-354(2000) [19] Meng, Z., Hu, Q., Dang, C.:An objective penalty function method for nonlinear programming. Appl. Math. Lett. 17, 683-689(2004) [20] Meng, Z., Hu, Q., Dang, C.:A penalty function algorithm with objective parameters for nonlinear mathematical programming. J. Ind. Manag. Optim. 5, 585-601(2009) [21] Meng, Z., Dang, C., Shen, R., Jiang, M.:A smoothing objective penalty function algorithm for inequality constrained optimization problems. Numer. Funct. Anal. Optim. 32, 806-820(2011) [22] Meng, Z., Dang, C., Jiang, M., Xu, X., Shen, R.:Exactness and algorithm of an objective penalty function. J. Glob. Optim. 56(2), 691-711(2013) [23] Meng, Z., Dang, C., Shen, R., Jiang, M.:An objective penalty function of bilevel programming. J. Optim. Theory Appl. 153, 377-387(2012) [24] Jiang, M., Meng, Z., Shen, R., Xu, X.:A quadratic objective penalty function for bilevel programming. J. Syst. Sci. Complex. 2, 327-337(2014) [25] Dempe, S., Dutta, J.:Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. 131, 37-48(2012) [26] Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.:Handbook of Test Problems in Local and Global Optimization. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1999) |