[1] Clímaco, J.N., Antunes, C.H., Alves,M.J.G.: Programação LinearMultiobjectivo. Coimbra University Press, Coimbra (2003) [2] Bornstein, C.T., Maculan, N., Pascoal, M., Pinto, L.L.: Multiobjective combinatorial optimization problems with a cost and several bottleneck objective functions: an algorithm with reoptimization. Comput. Oper. Res. 39(9), 1969-1976(2012) [3] Arbel, A., Oren, S.S.: Generating interior search directions for multiobjective linear programming. J. Multi-Criteria Decis. Anal. 2(2), 73-86(1993) [4] Arbel, A., Oren, S.S.: Using approximate gradients in developing an interactive interior primal-dual multiobjective linear programming algorithm. Eur. J. Oper. Res. 89(1), 202-211(1996) [5] Aghezzaf, B., Ouaderhman, T.: An interactive interior point algorithm for multiobjective linear programming problems. Oper. Res. Lett. 29(4), 163-170(2001) [6] Fonseca, M., Figueira, J.R., Resende, M.G.C.: Solving scalarized multiobjective network flow problems using an interior point method. Int. Trans. Oper. Res. 17(5), 607-636(2010) [7] Nyiam, P.B., Salhi, A.: On the simplex, interior-point and objective space approaches to multiobjective linear programming. J. Algorithms Comput. Technol. 15(1), 1-20(2021) [8] Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum 22(4), 425-460(2000) [9] Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spektrum 24(2), 193-213(2002) [10] Ehrgott, M., Puerto, J., Rodriguez-Chia, A.M.: Primal-dual simplex method for multiobjective linear programming. J. Optim. Theory Appl. 134(3), 483-497(2007) [11] Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674-2694(2007) [12] Fernández, J., Tóth, B.: Obtaining an outer approximation of the efficient set of nonlinear biobjective problems. J. Glob. Optim. 38(2), 315-331(2007) [13] Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Constraint propagation using dominance in interval branch & bound for nonlinear biobjective optimization. Eur. J. Oper. Res. 260(3), 934-948(2017) [14] Cooper, K., Hunter, S.R., Nagaraj, K.: Biobjective simulation optimization on integer lattices using the epsilon-constraint method in a retrospective approximation framework. INFORMS J. Comput. 32(4), 1080-1100(2020) [15] Dikin, I.: Iterative solution of problems of linear and quadratic programming. Dokl. Akad. Nauk SSSR 174(4), 747-748(1967) [16] Barnes, E.R.: A variation on Karmarkar’s algorithm for solving linear programming problems. Math. Program. 36, 174-182(1986) [17] Gonzaga, C.: Path-following methods for linear programming. SIAM Rev. 34(2), 167-224(1992) [18] Menezes, M.A.F.: Algoritmos de pontos interiores para programação linear combinando fase 1 e fase 2. Master’s thesis, Federal University of Rio de Janeir, Brazil (1991) [19] Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Heidelberg (1993) [20] Saigal, R.: Linear Programming: A Modern Integrated Analysis. Springer, New York (1995) [21] Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1998) [22] Ermol’ev, Y.M., Tuniev, A.D.: Random Fejér and quasi-Fejér sequences, Theory of Optimal Solutions—Akademiya Nauk Ukrainskoǐ SSR Kiev vol. 2, pp. 76-83(1968); translated in: American Mathematical Society Selected Translations in Mathematical Statistics and Probability vol. 13, pp. 143-148(1973) [23] Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. Stud. Comput. Math. 8, 115-152(2001) [24] Dikin, I.: On the convergence of an iterative process. Upr. Sist. 12, 54-60(1974). (in Russian) [25] Drummond, L.M.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395-414(2005) [26] Arbel, A.: Fundamentals of interior multiple objective linear programming algorithms. In: Gal, T., Stewart, T.J., Hanne, T. (eds.) Multicriteria Decision Making, pp. 367-396. Springer, Boston, MA (1999) |