[1] Alexander, G.J., Baptista, A.M.: Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. J. Econ. Dyn. Control. 26(7-8), 1159-1193(2002) [2] Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203- 228(1999) [3] Bodnar, T., Lindholm, M., Niklasson, V., Thorsén, E.: Bayesian portfolio selection using VaR and CVaR. Appl. Math. Comput. 427, 127120(2022) [4] Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1-2), 459-494(2014) [5] Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. 106(30), 12267-12272(2009) [6] Corsaro, S., De Simone, V., Marino, Z.: Split Bregman iteration for multi-period mean variance portfolio optimization. Appl. Math. Comput. 392, 125715(2009) [7] Corsaro, S., Simone, V.D., Marino, Z.: Fused lasso approach in portfolio selection. Ann. Oper. Res. 299(1), 47-59(2021) [8] Cui, A., Peng, J., Zhang, C., Li, H., Wen, M.: Sparse portfolio selection via non-convex fraction function (2021). arXiv:1801.09171 [9] DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manage. Sci. 55(5), 798-812(2009) [10] Derumigny, A.: Improved bounds for Square-Root Lasso and Square-Root Slope. Electr. J. Stat. 12(1), 741-766(2018) [11] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348-1360(2001) [12] Goel, A., Sharma, A., Mehra, A.: Index tracking and enhanced indexing using mixed conditional value-at-risk. J. Comput. Appl. Math. 335, 361-380(2018) [13] Guo, K., Han, D., Wang, D.Z., Wu, T.: Convergence of ADMM for multi-block nonconvex separable optimization models. Front. Math. China. 12, 1139-1162(2017) [14] Guo, K., Han, D., Wu, T.: Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. 94(8), 1653-1669(2017) [15] Han, D.: A survey on some recent developments of alternating direction method of multipliers. J. Op. Res. Soc. China. 10, 1-52(2022) [16] Jia, Z., Gao, X., Cai, X., Han, D.: Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. J. Optim. Theory Appl. 188, 1-25(2021) [17] Kim, Y., Choi, H., Oh, H.-S.: Smoothly clipped absolute deviation on high dimensions. J. Am. Stat. Assoc. 103(484), 1665-1673(2008) [18] Lai, Z.-R., Yang, P.-Y., Fang, L., Wu, X.: Short-term sparse portfolio optimization based on alternating direction method of multipliers. J. Mach. Learn. Res. 19(1), 2547-2574(2018) [19] Lee, S.-I., Ganapathi, V., Koller, D.: Efficient structure learning of Markov networks using L1- regularization. Adv. Neural Inf. Process. Syst. (2006). https://doi.org/10.7551/mitpress/7503.003.0107 [20] Li, B., Teo, K.L.: Portfolio optimization in real financial markets with both uncertainty and randomness. Appl. Math. Model. 100, 125-137(2021) [21] Liu, J., Chen, Z., Lisser, A., Xu, Z.: Closed-form optimal portfolios of distributionally robust meanCVaR problems with unknown mean and variance. Appl. Math. Optim. 79(3), 671-693(2019) [22] Lwin, K.T., Qu, R., MacCarthy, B.L.: Mean-VaR portfolio optimization: a nonparametric approach. Eur. J. Oper. Res. 260(2), 751-76(2017) [23] Markowitz, H.M.: Portfolio selection. J. Finance. 7(1), 71-91(1952) [24] Munos, R.: Performance bounds in $\ell$p-norm for approximate value iteration. SIAM J. Control. Optim. 46(2), 541-561(2007) [25] Pflug, G.C.: Some remarks on the value-at-risk and the conditional value-at-risk, pp. 272-281. Probabilistic constrained optimization. Springer, Berlin (2000) [26] Ramirez-Pico, C., Moreno, E.: Generalized adaptive partition-based method for two-stage stochastic linear programs with fixed recourse. Math. Program. 196(1-2), 755-774(2022) [27] Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21-42(2000) [28] Roy, A.D.: Safety first and the holding of assets. Econom.: J. Econom. Soc. 20(3), 431-449(1952) [29] Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231-245(2013) [30] Tao, M.: Minimization of L1 over L2 for sparse signal recovery with convergence guarantee. SIAM J. Sci. Comput. 44(2), A770-A797(2022) [31] Tao, M., Zhang, X.-P.: A unified study on $\ell$1 over $\ell$2 minimization (2021). arXiv:2108.01269 [32] Wang, C., Tao, M., Nagy, J.G., Lou, Y.: Limited-angle CT reconstruction via the $\ell$1/$\ell$2 minimization. SIAM J. Imag. Sci. 14(2), 749-777(2021) [33] Wang, H., Zhang, W., He, Y., Cao, W.: 0-norm based short-term sparse portfo- lio optimization algorithm based on alternating direction method of multipliers (2023). Available at SSRN: https://ssrn.com/abstract=4115395 [34] Wu, Y., Liu, Y.: Variable selection in quantile regression. Statistica Sinica, pp. 801-817(2009) [35] Wu, Z., Li, M.: General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems. Comput. Optim. Appl. 73, 129-158(2019) [36] Wu, Z., Sun, K., Ge, Z., Zeng, T.: Sparse portfolio optimization via a novel fractional regularization (2023). Available at SSRN: https://ssrn.com/abstract=4666990 [37] Xie, H., Huang, J.: SCAD-penalized regression in high-dimensional partially linear models. Ann. Stat. 37(2), 673-696(2009) [38] Xu, Q., Zhou, Y., Jiang, C., Yu, K., Niu, X.: A large CVaR-based portfolio selection model with weight constraints. Econ. Model. 59, 436-447(2016) [39] Yang, L., Pong, T.K., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and non-smooth problems with applications to back ground/foreground extraction. SIAM J. Imag. Sci. 10(1), 74-110(2017) [40] Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894-942(2010) [41] Zhao, H., Kong, L., Qi, H.-D.: Optimal portfolio selections via $\ell$1,2-norm regularization. Comput. Optim. Appl. 80(3), 853-881(2021) [42] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat Methodol. 67(2), 301-320(2005) |