[1] Wang, Y., Freedman, M.T., Kung, S.Y., Luo, L.:Probabilistic principal component subspaces:a hierarchical finite mixture model for data visualization. IEEE T. Neural. Networ. 11(3), 625-636(2000) [2] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends. Mach. Le. 3(1), 1-122(2011) [3] Xu, Z.B., Chang, X.Y., Xu, F.M., Zhang, H.:L1/2 regularization:a thresholding representation theory and a fast solver. IEEE T. Neur. Net. Lear. 23(7), 1013-1027(2012) [4] Zhang, C., Yang, L.F., Jian, J.B.:Two-stage fully distributed approach for unit commitment with consensus ADMM. Electr. Pow. Syst. Res. 181, 106180:1-106180:12(2020) [5] Glowinski, R., Marrocco, A.:Approximation paréléments finis drdre un et résolution, par pénalisationdualité dúne classe de problèmes de Dirichlet non linéaires. Rev. Fr. Autom. Inform. Rech. Opér. Anal. Numeér. 2, 41-76(1975) [6] Gabay, D., Mercier, B.:A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17-40(1976) [7] Peaceman, D., Rachford, J.R.H.:The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28-41(1955) [8] He, B.S., Liu, H., Wang, Z.R., Yuan, X.M.:A strictly contractive Peaceman-Rachford splitting method for convex programming. SIAM J. Optim. 24, 1011-1040(2014) [9] He, B.S., Ma, F., Yuan, X.M.:Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J. Imaging Sci. 9, 1467-1501(2016) [10] Vapnik, V.N.:The Nature of Statistical Learning Theory. Springer, New York (1995) [11] Lee, Y.J., Mangasarian, O.L.:SSVM:a smooth support vector machines for classification. Comput. Optim. Appl. 20(1), 5-22(2001) [12] Chen, C.H., He, B.S., Ye, Y.Y., Yuan, X.M.:The direct extension of ADMM for multi-block convex minimization problems is not necessary convergent. Math. Program. 155, 57-79(2016) [13] He, B.S., Tao, M., Yuan, X.M.:Convergence rate analysis for the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. 42(3), 662-691(2017) [14] He, B.S., Yuan, X.M.:A class of ADMM-based algorithms for three-block separable convex programming. Comput. Optim. Appl. 70, 791-826(2018) [15] He, B.S., Xu, S.J., Yuan, X.M.:Extensions of ADMM for separable convex optimization problems with linear equality or inequality constraints. arXiv:2107.01897v2(2021) [16] Jian, J.B.:A superlinearly convergent implicit smooth SQP algorithm for mathematical programs with nonlinear complementarity constraints. Comput. Optim. Appl. 31(3), 335-361(2005) [17] Jian, J.B., Tang, C.M., Hu, Q.J., Zheng, H.Y.:A new superlinearly convergent strongly subfeasible sequential quadratic programming algorithm for inequality constrained optimization. Numer. Funct. Anal. Optim. 29(3-4), 376-409(2008) [18] Solodov, M.V.:Global convergence of an SQP method without boundedness assumptions on any of the iterative sequences. Math. Program. 118(1), 1-12(2009) [19] Jian, J.B.:Fast Algorithms for Smooth Constrained Optimization-Theoretical Analysis and Numerical Experiments (in Chinese). Science Press, Beijing (2010) [20] Jian, J.B., Hu, Q.J., Tang, C.M.:Superlinearly convergent norm-relaxed sqp method based on active set identification and new line search for constrained Minimax problems. J. Optim. Theory Appl. 163, 859-883(2014) [21] Schiela, A., Ortiz, J.:An SQP method for equality constrained optimization on Hilbert manifolds. SIAM J. Optim. 31(3), 2255-2284(2021) [22] Jian, J.B., Lao, Y.X., Chao, M.T., Ma, G.D.:ADMM-SQP algorithm for two blocks linear constrained nonconvex optimization. Oper. Res. Trans. 22(2), 79-92(2018)(in Chinese) [23] Jian, J.B., Zhang, C., Yin, J.H., Yang, L.F., Ma, G.D.:Monotone splitting sequential quadratic optimization algorithm with applications in electric power systems. J. Optim. Theory Appl. 186(1), 226-247(2020) [24] Jian, J.B., Liu, P.J., Yin, J.H., Zhang, C., Chao, M.T.:A QCQP-based splitting SQP algorithm for two-block nonconvex constrained optimization problems with application. J. Comput. Appl. Math. 390, 113368(2021) [25] Jian, J.B., Zhang, C., Yin, J.H.:A Peaceman-Rachford splitting sequential quadratic programming method with double step-lengths for two-block nonconvex optimization (in Chinese). Sci. Sin. Math. 52(12), 1449-1476(2022) [26] Rockafellar, R.T., Wets, R.J.B.:Variational Analysis. Springer Verlag (2009) [27] Wood, A.J., Wollenberg, B.F., Sheblé, G.B.:Power Generation, Operation, and Control. Wiley, New York (2014) [28] Theerthamalai, A., Maheswarapu, S.:An effective non-iterative "λ-logic based" algorithm for economic dispatch of generators with cubic fuel cost function. Int. J. Elec.l Power. 32(5), 539-542(2010) [29] Wang, H., Banerjee, A.:Bregman alternating direction method of multipliers. In:Advances in Neural Information Processing Systems 27(NIPS 2014), Curran Associates, 2816-2824(2014) [30] Wang, F.H., Xu, Z.B., Xu, H.K.:Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. arXiv:1410.8625(2014) |