Journal of the Operations Research Society of China ›› 2024, Vol. 12 ›› Issue (4): 847-873.doi: 10.1007/s40305-023-00455-7
Jiawang Nie1, Li Wang2, Zequn Zheng1
Received:
2022-04-15
Online:
2024-12-30
Published:
2024-12-12
Contact:
Jiawang Nie, Li Wang, Zequn Zheng
E-mail:njw@math.ucsd.edu;li.wang@uta.edu;zez084@ucsd.edu
Supported by:
CLC Number:
Jiawang Nie, Li Wang, Zequn Zheng. Low Rank Tensor Decompositions and Approximations[J]. Journal of the Operations Research Society of China, 2024, 12(4): 847-873.
[1] Landsberg, J.: Tensors: Geometry and Applications, Grad. Stud. Math., 128, AMS, Providence, RI, (2012) [2] Lim, L.H.: Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of Linear Algebra, 2nd edn. CRC Press, Boca Raton (2013) [3] Breiding, P., Vannieuwenhoven, N.: A Riemannian trust region method for the canonical tensor rank approximation problem. SIAM J. Optim. 28(3), 2435-2465(2018) [4] Lathauwer, L., de Moor, B., Vandewalle, J.: Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J. Matrix Anal. Appl. 26(2), 295-327(2004) [5] Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642-666(2006) [6] Domanov, I., de Lathauwer, L.: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition. SIAM J. Matrix Anal. Appl. 35(2), 636-660(2014) [7] Nie, J.: Generating polynomials and symmetric tensor decompositions. Found. Comput. Math. 17(2), 423-465(2017) [8] Sorber, L., van Barel, M., de Lathauwer, L.: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) terms, and a new generalization. SIAM J. Optim. 23(2), 695-720(2013) [9] Telen, S., Vannieuwenhoven, N.: Normal forms for tensor rank decomposition. (2021) arXiv:2103.07411 [10] Cui, C.F., Dai, Y.H., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35(4), 1582-1601(2014) [11] Fan, J., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. Math. Progr. 170(2), 507-539(2018) [12] Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35(3), 1155-1179(2014) [13] Nie, J., Zhang, X.: Real eigenvalues of nonsymmetric tensors. Comput. Opt. Appl. 70(1), 1-32(2018) [14] Nie, J., Yang, Z., Zhang, X.: A complete semidefinite algorithm for detecting copositive matrices and tensors. SIAM J. Optim. 28(4), 2902-2921(2018) [15] Xiong, L., Chen, X., Huang, T.-K., Schneider, J., Carbonell, J. G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: Proceedings of the 2010 SIAM International Conference on Data Mining, 211-222, (2010) [16] Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data 5(2), 1-27(2011) [17] Araujo, M., Papadimitriou, S., Gunnemann, S., Faloutsos, C., Basu, P., Swami, A., Papalexakis, E. E., Koutra, D.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, 271-283, (2014) [18] Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, 809-816, (2011) [19] Jenatton, R., Roux, N., Bordes, A., Obozinski, G.R.: A latent factor model for highly multi-relational data. Adv. Neural. Inf. Process. Syst. 25, 3167-3175(2012) [20] Boden, B., Gunnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 1258-1266, (2012) [21] Kofidis, E., Regalia, P.A.: Tensor approximation and signal processing applications. Contemp. Math. 280, 103-134(2001) [22] Pajarola, R., Suter, S. K., Ballester-Ripoll, R., Yang, H.: Tensor approximation for multidimensional and multivariate data. In: Anisotropy Across Fields and Scales, 73-98, (2021) [23] Guo, B., Nie, J., Yang, Z.: Learning diagonal gaussian mixture models and incomplete tensor decompositions. Vietnam J. Math. (2021). https://doi.org/10.1007/s10013-021-00534-3 [24] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455-500(2009) [25] Nie, J., Yang, Z.: Hermitian tensor decompositions. SIAM J. Matrix Anal. Appl. 41(3), 1115-1144(2020) [26] Friedland, S., Wang, L.: Spectral norm of a symmetric tensor and its computation. Math. Comput. 89, 2175-2215(2020) [27] Qi, L., Hu, S.: Spectral norm and nuclear norm of a third order tensor (2019). arXiv:1909.01529 [28] de Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084-1127(2008) [29] Comon, P., Luciani, X., de Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemom. 23, 393-405(2009) [30] Mao, X., Yuan, G., Yang, Y.: A self-adaptive regularized alternating least squares method for tensor decomposition problems. Anal. Appl. 18(01), 129-147(2020) [31] Yang, Y.: The epsilon-alternating least squares for orthogonal low-rank tensor approximation and its global convergence. SIAM J. Matrix Anal. Appl. 41(4), 1797-1825(2020) [32] Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, · · ·, Rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324-1342(2000) [33] Guan, Y., Chu, M.T., Chu, D.: Convergence analysis of an svd-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl. 555, 53-69(2018) [34] Friedland, S.,Tammali,V.:Low-rank approximation of tensors.In:NumericalAlgebra,MatrixTheory, Differential-Algebraic Equations and Control Theory. 377-411, Springer, (2015) [35] Nie, J.: Low rank symmetric tensor approximations. SIAM J. Matrix Anal. Appl. 38(4), 1517-1540(2017) [36] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2013) [37] Schafarevich, I.: Basic Algebraic Geometry I: Varieties in Projective Space. Springer-Verlag, Berlin (1988) [38] Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95-138(1977) [39] Chiantini, L., Ottaviani, G., Vannieuwenhoven, N.: Effective criteria for specific identifiability of tensors and forms. SIAM J. Matrix Anal. Appl. 38(2), 656-681(2017) [40] Nie, J.: Nearly low rank tensors and their approximations (2014). arXiv:1412.7270 [41] Nie, J., Wang, L., Zheng, Z.: Higher Order Correlation Analysis for Multi-View Learning, Pacific Journal of Optimization, to appear, (2022) [42] Demmel, J.: Applied Numerical Linear Algebra. SIAM, New Delhi (1997) [43] Chatelin, F.: Eigenvalues of Matrices. SIAM, New Delhi (2012) [44] Vervliet, N., Debals, O., de Lathauwer, L.: Tensorlab 3.0- numerical optimization strategies for large-scale constrained and coupled matrix/tensor factorization, In 201650th Asilomar Conference on Signals, Systems and Computers, 1733-1738, (2016) [45] Leurgans, S.E., Ross, R.T., Abel, R.B.: A decomposition for three-way arrays. SIAM J. Matrix Anal. Appl. 14, 1064-1083(1993) [46] Sanchez, E., Kowalski, B.R.: Tensorial resolution: a direct trilinear decomposition. J. Chemometrics 4, 29-45(1990) |
[1] | Jian-Ze Li, Shu-Zhong Zhang. Polar Decomposition-based Algorithms on the Product of Stiefel Manifolds with Applications in Tensor Approximation [J]. Journal of the Operations Research Society of China, 2024, 12(4): 874-920. |
[2] | Jian-Ping Li, Wen-Cheng Wang, Jun-Ran Lichen, Yu-Jie Zheng. Approximation Algorithms for Constructing Steiner Trees in the Euclidean Plane R2 Using Stock Pieces of Materials with Fixed Length [J]. Journal of the Operations Research Society of China, 2024, 12(4): 996-1021. |
[3] | Tong-Tong Shang, Guo-Ji Tang. Expected Residual Minimization Method for Stochastic Tensor Variational Inequalities [J]. Journal of the Operations Research Society of China, 2024, 12(4): 1048-1071. |
[4] | Fan-Yu Kong, Cui-Xia Miao, Yu-Jia Huo, Jia-Xin Song, Yu-Zhong Zhang. Single-Machine Scheduling with Step-Deteriorating Jobs and Rejection [J]. Journal of the Operations Research Society of China, 2024, 12(4): 1088-1102. |
[5] | Jie Jiang, Zhi-Ping Chen. Discrete Approximation and Convergence Analysis for a Class of Decision-Dependent Two-Stage Stochastic Linear Programs [J]. Journal of the Operations Research Society of China, 2024, 12(3): 649-679. |
[6] | Jian-Ping Li, Su-Ding Liu, Jun-Ran Lichen, Peng-Xiang Pan, Wen-Cheng Wang. Approximation Algorithms for Solving the 1-Line Minimum Steiner Tree of Line Segments Problem [J]. Journal of the Operations Research Society of China, 2024, 12(3): 729-755. |
[7] | Wei-Dong Li. Improved Approximation Schemes for Early Work Scheduling on Identical Parallel Machines with a Common Due Date [J]. Journal of the Operations Research Society of China, 2024, 12(2): 341-350. |
[8] | Fan Yuan, Da-Chuan Xu, Dong-Lei Du, Dong-Mei Zhang. Local search yields a PTAS for fixed-dimensional k-means problem with penalties [J]. Journal of the Operations Research Society of China, 2024, 12(2): 351-362. |
[9] | Wen-Zhao Liu, Min Li. An Approximation Algorithm Based on Seeding Algorithm for Fuzzy k-Means Problem with Penalties [J]. Journal of the Operations Research Society of China, 2024, 12(2): 387-409. |
[10] | Bin Liu, Hui Su, Shu-Fang Gong, Qi-Zhi Fang. Adaptive Algorithms on Maximizing Monotone Nonsubmodular Functions [J]. Journal of the Operations Research Society of China, 2024, 12(2): 428-445. |
[11] | Chuan-Long Wang, Xiong-Wei Guo, Xi-Hong Yan. An Accelerated Proximal Gradient Algorithm for Hankel Tensor Completion [J]. Journal of the Operations Research Society of China, 2024, 12(2): 461-477. |
[12] | Hong-Ye Zheng, Suo-Gang Gao, Wen Liu, Bo Hou. An Approximation Algorithm for the Parallel-Machine Customer Order Scheduling with Delivery Time and Submodular Rejection Penalties [J]. Journal of the Operations Research Society of China, 2024, 12(2): 495-504. |
[13] | Sergey N. Smirnov. Structural Stability of the Financial Market Model: Continuity of Superhedging Price and Model Approximation [J]. Journal of the Operations Research Society of China, 2024, 12(1): 215-241. |
[14] | Amina Sabir, Peng-Fei Huang, Qing-Zhi Yang. The Low-Rank Approximation of Fourth-Order Partial-Symmetric and Conjugate Partial-Symmetric Tensor [J]. Journal of the Operations Research Society of China, 2023, 11(4): 735-758. |
[15] | Zhong-Zheng Tang, Zhuo Diao. Approximation Algorithms on k-Correlation Clustering [J]. Journal of the Operations Research Society of China, 2023, 11(4): 911-924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||