[1] Charikar, M., Khuller, S., Mount, D. M., Narasimhan, G.:Algorithms for facility location problems with outliers. In:Proceedings of Symposium on Discrete Algorithms, pp 642-651(2001) [2] Hajiaghayi, M., Khandekar, R., Kortsarz, G.:Local search algorithms for the redblue median problem. Algorithmica 63(4), 795-814(2012) [3] Wu, C., Du, D., Xu, D.:An approximation algorithm for the k-median problem with uniform penalties via pseudo-solution. Theor. Comput. Sci. 749, 80-92(2018) [4] Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.:Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795-824(2003) [5] Li, Y., Du, D., Xiu, N., Xu, D.:Improved approximation algorithms for the facility location problems with linear/submodular penalties. Algorithmica 73(2), 460-482(2015) [6] Xu, G., Xu, J.:An improved approximation algorithm for uncapacitated facility location problem with penalties. J. Comb. Optim. 17(4), 424-436(2009) [7] Feng, Q., Zhang, Z., Shi, F., Wang, J.:An improved approximation algorithm for the k-means problem with penalties. In:Proceedings of FAW, pp. 170-181(2019) https://doi.org/10.1007/978-3-030-18126-0_15 [8] Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.:Local search approximation algorithms for the k-means problem with penalties. J. Comb. Optim. 37(2), 439-453(2019) [9] Aloise, D., Deshpande, A., Hansen, P., Popat, P.:NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245-248(2009) [10] Dasgupta, S.:The hardness of-means clustering (Technical Report CS2008-0916). Department of Computer Science and Engineering. University of California, San Diego (2008) [11] Mahajan, M., Nimbhorkar, P., Varadarajan, K.:The planar k-means problem is NP-hard. In:Proceedings of WALCOM, pp 274-285(2009) https://doi.org/10.1016/j.tcs.2010.05.034 [12] Lloyd, S.:Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129-137(1982) [13] Matoušek, J.:On approximate geometric k-clustering. Discret. Comput. Geom. 24(1), 61-84(2000) [14] Jain, K., Vazirani, V.V.:Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274-296(2001) [15] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.:A local search approximation algorithm for k-means clustering. Comput. Geom. 28(2-3), 89-112(2004) [16] Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.:Better guarantees for k-means and Euclidean k-median by primal-dual algorithms. In:Proceedings of Annual Symposium on Foundations of Computer Science, pp 61-72(2017) [17] Charikar, M., Guha, S.:Improved combinatorial algorithms for the facility location and k-median problems. In:Proceedings of Annual Symposium on Foundations of Computer Science, pp 378-388(1999) [18] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.:Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544-562(2004) [19] Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.:An improved approximation for k-median, and positive correlation in budgeted optimization. ACM Trans. Algorithms 13(2), 737-756(2017) [20] Friggstad, Z., Rezapour, M., Salavatipour, M. R.:Local search yields a PTAS for k-means in doubling metrics. In:Proceedings of Annual Symposium on Foundations of Computer Science, pp 365-374(2016) [21] Cohen-Addad, V., Klein, P. N., Mathieu, C.:Local search yields approximation schemes for k-means and k-median in Euclidean and minor-free metrics. In:Proceedings of Annual Symposium on Foundations of Computer Science, pp 353-364(2016) [22] Cohen-Addad, V.:A fast approximation scheme for low-dimensional k-means. In:Proceedings of SODA, pp 430-440(2018) [23] Arora, S., Raghavan, P., Rao, S.:Approximation schemes for Euclidean k-medians and related problems. In:Proceedings of STOC, pp 106-113(1998) https://doi.org/10.1145/276698.276718 [24] Arora, S.:Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753-782(1998) |