[1] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.:Image inpainting. In:SIGGRAPH Conference (2000) [2] Morup, M.:Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 24-40(2011) [3] Comon, P.:Tensor decompositions, state of the art and applications. Stats. 1-24(2009) [4] Signoretto, M., Van de Plas, R., De Moor, B., Suykens, J.A.K.:Tensor versus matrix completion:a comparison with application to spectral data. IEEE Signal Process. Lett. 18(7), 403-406(2011) [5] Kolda, T.G., Bader, B.W., Kenny, J.P.:Higher-order web link analysis using multilinear algebra. In:Fifth IEEE International Conference on Data Mining, pp. 27-30(2005) [6] Liu, J., Musialski, P., Wonka, P., Ye, J.:Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208-220(2013) [7] Liu, J., Musialski, P., Wonka, P., Ye,J.:Tensor completion for estimating missing values in visual data. In:IEEE International Conference on Computer Vision, pp. 2114-2121(2009) [8] Gandy, S., Recht, B., Yamada, I.:Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Prob. 27(2), 025010(2011) [9] Tan, H., Feng, J., Li, F., Zhang, Y., Chen, T.:Low multilinear rank tensor completion with missing data. Energy Procedia 11, 201-209(2011) [10] Xue, S., Qiu, W., Liu, F., Jin, X.:Low-rank tensor completion by trunncated nuclear norm regularization. In:24th International Conference on Pattern Recognition, pp. 2600-2605(2018) [11] Zhang, Z., Aeron, S.:Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65(6), 1511-1526(2017) [12] Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.:Novel methods for multilinear data completion and de-noising based on tensor-svd. In:2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842-3949(2014) [13] Badeau, R., Boyer, R.:Fast multilinear singular value decomposition for structured tensors. Siam J. Matrix Anal. Appl. 30(3), 1008-1021(2008) [14] Smith, R.S.:Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations. IEEE Trans. Autom. Control 59(11), 2886-2896(2014) [15] Vanhecke, S.V., Decannierep, C., Vanhuffel, S., Chen, H., Decabbiere, C.:Algorithm for time-domain NMR data fitting based on total least squares. J. Mag. Reson. Ser. A. 110(2), 228-237(1994) [16] Ding, W., Qi, L., Wei, Y.:Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22(5), 814-832(2015) [17] Qi, L.:Hankel tensors:associated Hankel matrices and Vandermonde decomposition. Communications in Mathematical Sciences (2015). https://doi.org/10.4310/CMS.2015.v13.n1.a6 [18] Xu, C.:Hankel tensors, Vandermonde tensors and their positivities. Linear Algebra Appl. 491, 56-72(2016) [19] Chen, Y., Qi, L., Wang, Q.:Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors. J. Comput. Appl. Math. 302, 356-368(2016) [20] Ding, W., Qi, L., Wei, Y.:Inheritance properties and sum-of-squares decomposition of Hankel tensors:theory and algorithms. BIT Numer. Math. 57(1), 1-22(2016) [21] Adamo, A., Mazzucchelli, P.:3D interpolation using Hankel tensor completion by orthogonal mathching pursuit. In:GNGTS (2014) [22] Trickett, S., Burroughs, L.,Milton, A.:Interpolation using Hankel tensor completion.In:Seg Technical Program Expanded Abstracts, pp. 3634-3638(2013) [23] Toh, C.K., Yun, S.:An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(3), 615-640(2010) [24] Comon, P., Golub, G., Lim, L.H., Mourrain, B.:Symmetric tensors and symmetric tensor rank. Siam J. Matrix Anal. Appl. 30(3), 1254-1279(2008) [25] Nie, J., Ye, K.:Hankel tensor decompositions and ranks. SIAM J. Matrix Anal. Appl. 40(2), 486-516(2019) [26] Golub, G.H., VanLoan, C.F.:Matrix Computations. The Johns Hopkins University Press, Baltimore (1996) [27] Cai, J.F., Candès, E.J., Shenm, Z.:A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956-1982(2010) [28] Beck, A., Teboulle, M.:A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183-202(2009) |