[1] Goemans, M.X., Williamson, D.P.:Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115-1145(1995) [2] Feige, U.:A threshold of ln n for approximating set cover. J. ACM 45(4), 634-652(1998) [3] Ageev, A.A., Sviridenko, M.I.:An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 3, 149-156(1999) [4] Cornnejols, G., Fisher, M., Nemhauser, G.:Location of bank accounts of optimize float:an analytic study of exact and approximate algorithm. Manag. Sci. 23, 789-810(1977) [5] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.:An analysis of approximations for maximizing submodular set functions. Math. Program. 14(1), 265-294(1978) [6] Balkanski, E., Singer, Y.:The adaptive complexity of maximizing a submodular function. In:STOC, pp. 1138-1151(2018) [7] Balkanski, E., Rubinstein, A., Singer, Y.:An exponential speedup in parallel running time for submodular maximization without loss in approximation. In:SODA, pp. 283-302(2019) [8] Fahrbach, M., Mirrokni, V., Zadimoghaddam, M.:Submodular maximization with nearly optimal approximation, adaptivity and query complexity. In:SODA, pp. 255-273(2019) [9] Ene, A., Nguyen, H.L.:Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In:SODA, pp. 274-282(2019) [10] Breuer, A., Balkanski, E., Singer, Y.:The FAST algorithm for submodular maximization. In:ICML, pp. 1134-1143(2020) [11] Balkanski, E., Rubinstein, A., Singer, Y.:An optimal approximation for submodular maximization under a matroid constraint in the adaptive complexity model. In:STOC, pp. 66-77(2019) [12] Fahrbach, M., Mirrokni, V., Zadimoghaddam, M.:Non-monotone submodular maximization with nearly optimal adaptivity and query complexity. In:ICML, pp. 1833-1842(2019) [13] Kuhnle, A.:Nearly linear-time, parallelizable algorithms for non-monotone submodular maximization. In:AAAI, pp. 8200-8208(2021) [14] Krause, A., Singh, A., Guestrin, C.:Near-optimal sensor placements in Gaussian processes:theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235-284(2008) [15] Lin, Y., Chen, W., Lui, J.C.S.:Boosting information spread:an algorithmic approach. In:ICDE, pp. 883-894(2017) [16] Das, A., Kempe, D.:Submodular meets spectral:Greedy algorithms for subset selection, sparse approximation and dictionary selection. In:ICML, pp. 1057-1064(2011) [17] Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.:Fast maximization of nonsubmodular, monotonic functions on the integer lattice. In:ICML, pp. 2791-2800(2018) [18] Nong, Q., Sun, T., Gong, S., Fang, Q., Du D., Shao X.:Maximize a monotone function with a generic submodularity ratio. In:AAIM, pp. 249-260(2019) [19] Badanidiyuru, A., Vondrák, J.:Fast algorithm for maximization submodular functions. In:SODA, pp. 1497-1514(2014) [20] Hassidim, A., Singer, Y.:Robust guarantees of stochastic greedy algorithms. In:ICML, pp. 1424-1432(2017) |