Journal of the Operations Research Society of China ›› 2022, Vol. 10 ›› Issue (4): 749-762.doi: 10.1007/s40305-021-00341-0
Previous Articles Next Articles
Diriba Kajela Geleta1,2, Mukhdeep Singh Manshahia1
Received:
2019-05-21
Revised:
2020-11-27
Online:
2022-12-30
Published:
2022-11-09
Contact:
Mukhdeep Singh Manshahia,Diriba Kajela Geleta
E-mail:mukhdeep@gmail.com;kajeladiriba@yahoo.com
CLC Number:
Diriba Kajela Geleta, Mukhdeep Singh Manshahia. A Hybrid of Grey Wolf Optimization and Genetic Algorithm for Optimization of Hybrid Wind and Solar Renewable Energy System[J]. Journal of the Operations Research Society of China, 2022, 10(4): 749-762.
[1] Motaz Amer, A.N.: Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction. Elsevier LTD, Amsterdam (2013) [2] Vasant, P., Zelinka, I., Weber, G. W.: Intelligent Computing and Optimization. In: Conference roceedings ICO 2018, Springer, Cham, ISBN 978–3–030–00978–6(2018) [3] Rubio, R., Perea, M.T., Vazquez, D.V., OsMoreno, G.J.: Optimal sizing of renewable hybrids energy systems: a review of methodologies. Sol. Energy 86(4), 1077–1088(2012) [4] Geleta, D.K., & Manshahia, M.S.: Optimization of Hybrid Wind and Solar Renewable Energy System by Iteration Method. In: International Conference on Intelligent Computing and Optimization Springer, 98–107(2018) [5] Kosmadakis, G., Sotirios, K., Emmanuel, K.: Renewable and conventional electricity generation systems. Technologies and diversity of energy systems. In: Michalena, E., Hills, J.M. (eds.) Renewable En-ergy Governance, pp. 9–3. Springer, London (2013) [6] Geleta, D.K., Manshahia, M.S.: Artificial bee colony-based optimization of hybrid wind and solar renewable energy system. In: Handbook of research on energy-saving technologies for environmentally-friendly agricultural development, pp. 429–453. IGI Global (2020) [7] Zong, W.G.: Size optimization for a hybrid photovoltaic wind energy system. Electr. Power Energy Syst. 42(1), 448–451(2012) [8] Luna, R.R., Trejo, P.M., Vargas, D., Os-Moreno, G.: Optimal sizing of renewable hybrids energy sys-tems: a review of methodologies. Sol. Energy 88(4), 1077–1088(2012) [9] Ganesan, T., Vasant, P., Elamvazuthi, I.: Advances in metaheuristics: applications in engineering systems, 1st edn. CRC Press, Florida (2016) [10] Vasant, P., Kose, U., Watada, J.: Metaheuristic techniques in enhancing the efficiency and performance of thermoelectric cooling devices. Energies 10(11), 1703(2017) [11] Elhadidy, M.A., Shaahid, S.M.: Optimal sizing of battery storage for hybrid (wind+ diesel) power systems. Renew. Energy 18(1), 77–86(1999) [12] Gavanidou, E.S., Bakirtzis, A.G., Dokopoulos, P.S.: A probabilistic method for the evaluation of the performance and the reliability of wind-diesel energy systems. IEEE Trans. Energy Convers. 8(2), 197–206(1993) [13] Borowy, B.S., Salameh, Z.M.: Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 11(2), 367–375(1996) [14] Kellog, W., Nehrir, M., Venkataramanan, G., Gerez, V.: Generation unit sizing and cost analysis for stand -alone wind, phovoltaic, and hybrid wind/PV systems. IEEE Trans. Energy Convers. 13(1), 70–75(1998) [15] Diaf, S., Belhamel, M., Haddadi, M., Louche, A.: A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 35(11), 5708–5718(2007) [16] Belfkira, R., Zhang, L., Barakat, G.: Optimal sizing study of hybrid wind/PV/diesel power generation unit. Sol. Energy 85(1), 100–110(2011) [17] Alireza, A.: Developing a discrete harmony search algorithm for size optimization of wind–photovoltaic hybrid energy system. Sol. Energy 98, 190–195(2013) [18] Singh, S., Kaushik, S.C.: Optimal sizing of grid integrated hybrid PV-biomass energy system using arti cial bee colony algorithm. IET Renew. Power Gener. 10(5), 642–650(2016) [19] Ashok, S.: Optimised model for community-based hybrid energy system. Renew. Energy 32, 1155–1164(2007) [20] Koutroulis, E., Dionissia, K., Potirakis, A., Kostas, K.: Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol. Energy 80(9), 1072–1088(2006) [21] Wang, L., Singh, C.: Multicriteria design of hybrid power generation systems based on a modied particle swarm optimization algorithm. IEEE Trans. Energy Conves. 24(1), 163–172(2009) [22] Eltamaly, A.M., Mohamed, M.A.: A novel design and optimization software for autonomous PV/wind/battery hybrid power systems. Probl. Eng Math (2014). https://doi.org/10.1155/2014/637174 [23] Bueno, C., Carta, J.A.: Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro. Sol. Energy 78(3), 396–405(2005) [24] Ilinca,A.,McCarthy,E.,Chaumel,J.L.,Retiveau,J.L.:WindpotentialassessmentofQuebecProvince. Renew. Energy 28(12), 1881–1897(2003) [25] Chedid, R., Akiki, H., Rahman, S.: A decision support technique for the design of hybrid solar-wind power systems. IEEE Trans. Energy Convers. 13(1), 76–83(1998) [26] Eftichios, K., Dionissia, K., Antonis, P., Kostas, K.: Methodology for optimal sizing of stand alone photovoltaic/wind generator systems using genetic algorithms. Sol. Energy 80(9), 1072–1088(2006) [27] Lysen, H.: Introduction to wind energy. Consultancy Services. Wind Energy 82–91(1983) [28] Javadi, M.R., Mazlumi, K., Jalilvand, A.: Application of GA, PSO and ABC in optimal design of a stand-alonehybridsystemfornorth-westofIran.In:Electricalandelec-tronicsengineering(ELECO), pp. 1–203(2011) [29] Etamaly, A.M., Mohamed, M.A., Alo-lah, A.I.: A smart technique for optimization and simulation of hybrid photo-voltaic/wind/diesel/battery energy systems.In:SmartEnergy Grid Engineering (SEGE), 2015 IEEE International Conference on, 1–6(2015) [30] Bin, A., Hongxing, Y., Shen, H., Xianbo, L.: Computer aided design for PV/Wind hybrid system. Renew Energy 28, 1491–1512(2003) [31] Vasant, P., Zelinka, I., Weber, G., W.: Intelligent Computing and Optimization. In: Proceedings of the 2nd International Conference on Intelligent Computing and Optimization. Springer International Publishing. ISBN 978–3–030–33585–4(2019) [32] Vasant, P., Marmolejo, J.A., Litvinchev, I., Aguilar, R.R.: Nature-inspired meta-heuristics approaches for charging plug-in hybrid electric vehicle. Wirel. Netw (2019). https://doi.org/10.1007/s11276-019-01993-w [33] Yang, H., Zhou, W., Lou, C.: Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Sol. Energy 82(4), 354–367(2008) [34] Mirjalili, S., Seyed, M.M., Andrew, L.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61(2014) [35] Geleta, D.K., Manshahia, M.S.: Nature inspired computational intelligence: a survey. Int. J. Eng. Sci. Math. 6(7), 769–795(2017) [36] Geleta, D.K., Manshahia, M.S.: Optimization of renewable energy systems: a review. Int. J. Sci. Res. Sci. Technol. 8(3), 769–795(2017) [37] Eid, E., Zawbaa, H.M., Grosan, C.: Experienced gray wolf optimization through reinforcement learning and neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(3), 681–694(2018) [38] Hadidian, M.J., Arabi, N.S., Bigdeli, M.: Optimal sizing of a stand-alone hybrid photovoltaic/wind system using new grey wolf optimizer considering reliability. J. Renew. Sustain. Energy 8(3), 035903(2016). https://doi.org/10.1063/1.4950945 [39] Sharmistha,S.,Bhattacharje,S.,Bhattacharya,A.:Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid. IET Gener. Transm. Distrib. 10(3), 625–637(2016) [40] Borkar, P.I., Patil, L.H.: Web information retrieval using genetic algorithm-particle swarm optimization. Int. J. Future Comput. Commun. (2013). https://doi.org/10.7763/IJFCC.2013.V2.234 [41] Kapoor,V.,Dey,S.,Khurana,A.:Geneticalgorithm:an application to technicaltrading system design. Int. J. Comput. Appl. 36(5), 44–50(2011) [42] Zelinka, I., Tomaszek, L., Vasant, P., Dao, T.T., Hoang, D.V.: A novel approach on evolutionary dynamics analysis–A progress report. J. Comput. Sci. 25, 437–445(2018) |
[1] | Timothy Ganesan, Pandian Vasant, Igor Litvinchev. Chaotic Simulator for Bilevel Optimization of Virtual Machine Placements in Cloud Computing [J]. Journal of the Operations Research Society of China, 2022, 10(4): 703-723. |
[2] | Evgeniia Markova, Inna Sidler, Victor Trufanov. Optimization Problem for the Integral Model of Developing Systems [J]. Journal of the Operations Research Society of China, 2022, 10(4): 817-833. |
[3] | Qian Yan, Xin-Min Yang, Zhi-You Wu. On Convexification for a Class of Global Optimization Problems [J]. Journal of the Operations Research Society of China, 2022, 10(3): 427-446. |
[4] | Nan Meng, Yun-Bin Zhao. Newton-Type Optimal Thresholding Algorithms for Sparse Optimization Problems [J]. Journal of the Operations Research Society of China, 2022, 10(3): 447-469. |
[5] | Ru-Jun Jiang, Zhi-Shuo Zhou, Zi-Rui Zhou. Cubic Regularization Methods with Second-Order Complexity Guarantee Based on a New Subproblem Reformulation [J]. Journal of the Operations Research Society of China, 2022, 10(3): 471-506. |
[6] | Xiang-Yu Cui, Duan Li, Xiao Qiao, Moris S. Strub. Risk and Potential:An Asset Allocation Framework with Applications to Robo-Advising [J]. Journal of the Operations Research Society of China, 2022, 10(3): 529-558. |
[7] | Xing-Ju Cai, Ke Guo, Fan Jiang, Kai Wang, Zhong-Ming Wu, De-Ren Han. The Developments of Proximal Point Algorithms [J]. Journal of the Operations Research Society of China, 2022, 10(2): 197-239. |
[8] | Cai-Hua Chen, Yu-Hang Du, Dong-Dong Ge, Lin Lei, Yin-Yu Ye. Optimization and Operations Research in Mitigation of a Pandemic [J]. Journal of the Operations Research Society of China, 2022, 10(2): 289-304. |
[9] | Ying Cui, Chao Ding, Xu-Dong Li, Xin-Yuan Zhao. Augmented Lagrangian Methods for Convex Matrix Optimization Problems [J]. Journal of the Operations Research Society of China, 2022, 10(2): 305-342. |
[10] | De-Ren Han. A Survey on Some Recent Developments of Alternating Direction Method of Multipliers [J]. Journal of the Operations Research Society of China, 2022, 10(1): 1-52. |
[11] | Harun Öztürk. Modelling Economic Order Quantities, Considering Buy and Repair Options for Defective Items, and Allowing for Shortages and Inspection Errors [J]. Journal of the Operations Research Society of China, 2021, 9(4): 757-795. |
[12] | Prabhu Manyem. Disruption Recovery at Airports: Ground Holding, Curfew Restrictions and an Approximation Algorithm [J]. Journal of the Operations Research Society of China, 2021, 9(4): 819-852. |
[13] | Yu Mei, Zhi-Ping Chen, Bing-Bing Ji, Zhu-Jia Xu, Jia Liu. Data-driven Stochastic Programming with Distributionally Robust Constraints Under Wasserstein Distance: Asymptotic Properties [J]. Journal of the Operations Research Society of China, 2021, 9(3): 525-542. |
[14] | Zhong-Yu Wang, Yong-Jian Yang. Novel Global Optimization Algorithm with a Space-Filling Curve and Integral Function [J]. Journal of the Operations Research Society of China, 2021, 9(3): 619-640. |
[15] | Julien Collonge. Necessary Optimality Conditions for Semi-vectorial Bi-level Optimization with Convex Lower Level: Theoretical Results and Applications to the Quadratic Case [J]. Journal of the Operations Research Society of China, 2021, 9(3): 691-712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||