[1] Delage, E., Ye, Y.:Distributionally robust optimization under moment uncertainty with application to data-driven problems. Op. Res. 58(3), 595-612(2010) [2] Bertsimas, D., Gupta, V., Kallus, N.:Data-driven robust optimization. Math. Program. 167(2), 235-292(2017) [3] Esfahani, P.M.:Data-driven distributionally robust optimization using the Wasserstein metric:performance guarantees and tractable reformulations. Math. Program. 171, 115-166(2018) [4] Martínez-Jaramillo, S., Pérez, O.P., Embriz, F.A.D., Lopez, G.:Systemic risk, financial contagion and financial fragility. J. Econ. Dyn. Control 34(11), 2358-2374(2010) [5] Musin, O.R.:The kissing number in four dimensions. Annal. Math. 35, 1-32(2008) [6] Bachoc, C., Vallentin, F.:New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21(3), 909-924(2008) [7] Lee, J., Liberti, L.:On an SDP relaxation for kissing number. Optim. Lett. 14(2), 417-422(2020) [8] Chiba, N., Nishizeki, T., Saito, N.:An approximation algorithm for the maximum independent set problem on planar graphs. SIAM J. Comput. 11(4), 663-675(1982) [9] Kucherenko, S., Belotti, P., Liberti, L., Maculan, N.:New formulations for the kissing number problem. Discr. Appl. Math. 155(14), 1837-1841(2007) [10] Nesterov, Y.:Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9(1-3), 141-160(1998) [11] Luo, Z.-Q., Ma, W.-K., So, A.-C.:Ye, Y, Zhang, S:Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Magaz 27(3), 20-34(2010) [12] Zheng, X.J., Sun, X., Ling, L.D.:Convex relaxations for nonconvex quadratically constrained quadratic programming:matrix cone decomposition and polyhedral approximation. Math. Program. 129(2), 301-329(2011) [13] Lovasz, L.:On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1-7(1979) [14] Chlamtac,E.,Singh,G.:ImprovedapproximationguaranteesthroughhigherlevelsofSDPhierarchies:A pproximation, randomization and combinatorial optimization. Algorithms and Techniques, pp. 49-62. Springer, Cham (2008) [15] Wilson,Aaron T.:Applying the boundary point method to an SDP relaxation of the maximum independent set problem for a branch and bound algorithm. PhD thesis, New Mexico Institute of Mining and Technology (2009) [16] Biswas,P, Ye, Y.:Semidefinite programming for ad hoc wireless sensor network localization. In:Proceedings of the 3rd international symposium on Information processing in sensor networks, pages 46-54(2004) [17] Wang, Z., Zheng, S., Ye, Y., Boyd, S.:Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19(2), 655-673(2008) [18] Wang,Z,Ding,Y.:Real-timetrackingforsensornetworksviasdpandgradientmethod.InProceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments, pages 109-112(2008) [19] Carlsson, J.G., Armbruster, B., Ye, Y.:Finding equitable convex partitions of points in a polygon efficiently. ACM Trans. Algorithms 6(4), 1-19(2010) [20] Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.:Market equilibrium via a primal-dual algorithm for a convex program. J. ACM 55(5), 2541(2008) [21] Jalota, D, Pavone, M, Ye Y.:Markets for efficient public good allocation (2020). http://arxiv.org/abs/2005.10765 [22] Feng, Z., Glasser, J.W., Hill, A.N.:On the benefits of flattening the curve:a perspective. Math. Biosci. 364, 108389(2020) [23] Jordan, Rachel E., Adab, P, Cheng KK.:Covid-19:risk factors for severe disease and death, BMJ (2020). https://doi.org/10.1136/bmj.m1198 |