[1] Bard, J.F.: Some properties of the bilevel programming problem. J. Optim. Theory Appl. 68(2), 371–378(1991) [2] Vicente, L., Savard, G., Júdice, J.: Descent approaches for quadratic bilevel programming. J. Optim. Theory Appl. 81(2), 379–399(1994) [3] Deng, X.: Complexity issues in bilevel linear programming. In: Multilevel Optimization: Algorithms and Applications, pp. 149–164. Springer, Boston (1998) [4] Chowdhury, A., Zomorrodi, A.R., Maranas, C.D.: Bilevel optimization techniques in computational strain design. Comput. Chem. Eng. 72, 363–372(2015) [5] Chu, Y., You, F.: Integrated scheduling and dynamic optimization by stackelberg game: bilevel model formulation and efficient solution algorithm. Ind. Eng. Chem. Res. 53(13), 5564–5581(2014) [6] Gutjahr, W.J., Dzubur, N.: Bi-objective bilevel optimization of distribution center locations considering user equilibria. Transp. Res. Part E: Logist. Transp. Rev. 85, 1–22(2016) [7] Camacho-Vallejo, J.F., González-Rodríguez, E., Almaguer, F.J., González-Ramírez, R.G.: A bi-level optimization model for aid distribution after the occurrence of a disaster. J. Clean. Prod. 105, 134–145(2015) [8] Ding, T., Li, C., Yan, C., Li, F., Bie, Z.: A bilevel optimization model for risk assessment and contingency ranking in transmission system reliability evaluation. IEEE Trans. Power Syst. 32(5), 3803–3813(2016) [9] Limleamthong, P., Guillén-Gosálbez, G.: Rigorous analysis of Pareto fronts in sustainability studies based on bilevel optimization: application to the redesign of the UK electricity mix. J. Clean. Prod. 164, 1602–1613(2017) [10] Li, G., Zhang, R., Jiang, T., Chen, H., Bai, L., Li, X.: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process. Appl. Energy 194, 696–704(2017) [11] Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115(2015) [12] Senyo, P.K., Addae, E., Boateng, R.: Cloud computing research: a review of research themes, frameworks, methods and future research directions. Int. J. Inf. Manag. 38(1), 128–139(2018) [13] Stergiou, C., Psannis, K.E., Kim, B.G., Gupta, B.: Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 78, 964–975(2018) [14] Kumar, M.R.V., Raghunathan, S.: Heterogeneity and thermal aware adaptive heuristics for energy efficient consolidation of virtual machines in infrastructure clouds. J. Comput. Syst. Sci. 82(2), 191–212(2016) [15] Lopez-Pires, F., Baran, B.: Virtual machine placement literature review. arXiv:1506.01509(2015) [16] Usmani, Z., Singh, S.: A survey of virtual machine placement techniques in a cloud data center. Procedia Comput. Sci. 78, 491–498(2016) [17] Liu, X.F., Zhan, Z.H., Deng, J.D., Li, Y., Gu, T., Zhang, J.: An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans. Evol. Comput. 22(1), 113–128(2016) [18] Abdel-Basset, M., Abdle-Fatah, L., Sangaiah, A.K.: An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment.Cluster Computing, pp. 1–16(2018) [19] Shabeera, T.P., Kumar, S.M., Salam, S.M., Krishnan, K.M.: Optimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithm. Eng. Sci. Technol. Int. J. 20(2), 616–628(2017) [20] Abdelaziz, A., Elhoseny, M., Salama, A.S., Riad, A.M., Hassanien, A.E.: Intelligent algorithms for optimal selection of virtual machine in cloud environment, towards enhance healthcare services. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 289–298. Springer, Cham (2017) [21] Ghobaei-Arani, M., Shamsi, M., Rahmanian, A.A.: An efficient approach for improving virtual machine placement in cloud computing environment. J. Exp. Theor. Artif. Intell. 29(6), 1149–1171(2017) [22] Saber,T.,Thorburn,J.,Murphy,L.,Ventresque,A.:VM reassignment in hybrid clouds for large decentralised companies: a multi-objective challenge. Future Gener. Comput. Syst. 79, 751–764(2018) [23] Zelinka,I.,Davendra,D.,Roman,S.,Roman,J.:Do evolutionary algorithms dynamics create complex network structures? Complex Syst. 20(2), 127(2011) [24] Richter, H.: Coupled map lattices as spatio-temporal fitness functions: landscape measures and evolutionary optimization. Physica D. 237(2), 167–186(2008) [25] Zhang, Y.Q., Wang, X.Y.: Spatiotemporal chaos in mixed linear–nonlinear coupled logistic map lattice. Phys. A. 402, 104–118(2014) [26] Huang, A., Zhang, H.M., Guan, W., Yang, Y., Zong, G.: Cascading failures in weighted complex networks of transit systems based on coupled map lattices. In: Mathematical Problems in Engineering (2015) [27] Nematzadeh,H.,Enayatifar,R.,Motameni,H.,Guimarães,F.G.,Coelho,V.N.:Medicalimageencryption using a hybrid model of modified genetic algorithm and coupled map lattices. Opt. Lasers Eng. 110, 24–32(2018) [28] Gao, D., Li, X., Chen, H.: Application of improved particle swarm optimization in vehicle crashworthiness. In: Mathematical Problems in Engineering (2019). https://doi.org/10.1155/2019/8164609 [29] Lu, R., Gao, W., Hu, X., Liu, W., Li, Y., Liu, X.: Crushing analysis and crashworthiness optimization of tailor rolled tubes with variation of thickness and material properties. Int. J. Mech. Sci. 136, 67–84(2018) [30] Khunkitti, S., Watson, N.R., Chatthaworn, R., Premrudeepreechacharn, S., Siritaratiwat, A.: An improved DA-PSO optimization approach for unit commitment problem. Energies 12(12), 2335(2019) [31] Kumar, N.: Parameters analysis for PSO based task scheduling in cloud computing. (2019). https://doi.org/10.2139/ssrn.3349577 [32] Tam, J.H., Ong, Z.C., Ismail, Z., Ang, B.C., Khoo, S.Y.: A new hybrid GA–ACO–PSO algorithm for solving various engineering design problems. Int. J. Comput. Math. 96(5), 883–919(2019) [33] Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242(2013) [34] Ganesan, T., Elamvazuthi, I., Vasant, P.: Swarm intelligence for multiobjective optimization of extraction process. In: Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics, pp. 516–544(2016). https://doi.org/10.4018/978-1-4666-9644-0.ch020 [35] Ganesan, T., Vasant, P., Elamvazuthi, I.: Advances in Metaheuristics: Applications in Engineering Systems. CRC Press, Amsterdam (2016) [36] Sinha, A., Malo, P., Frantsev, A., Deb, K.: Finding optimal strategies in a multi-period multileader–follower Stackelberg game using an evolutionary algorithm. Comput. Oper. Res. 41, 374–385(2014) [37] Ganesan, T., Vasant, P., Elamvazuthi, I.: Multiobjective optimization of solar-powered irrigation system with fuzzy type-2 noise modelling. In: Emerging Research on Applied Fuzzy Sets and Intuitionistic Fuzzy Matrices, pp. 189–214. (2017). https://doi.org/10.4018/978-1-5225-0914-1.ch008 [38] Zhang, H., Wang, X., Wang, S., Guo, K., Lin, X.: Application of coupled map lattice with parameter q in image encryption. Opt. Lasers Eng. 88, 65–74(2017) [39] Pan, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29(2016) [40] Shi, J., Zhang, W., Zhang, Y., Xue, F., Yang, T.: MPPT for PV systems based on a dormant PSO algorithm. Electr. Power Syst. Res. 123, 100–107(2015) [41] Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202–2213(2014) [42] Ganesan, T., Aris, M.S., Vasant, P.: Extreme value metaheuristics for optimizing a many-objective gas turbine system. Int. J. Energy Optim. Eng. 7(2), 76–96(2018) [43] Ganesan, T., Elamvazuthi, I.: A multi-objective approach for resilience-based plant design optimization. Qual. Eng. 29(4), 656–671(2017) [44] Ganesan, T., Aris, M.S., Elamvazuthi, I.: Multiobjective strategy for an industrial gas turbine: absorption chiller system. In: Handbook of Research on Emergent Applications of Optimization Algorithms, pp. 531–556. IGI Global (2018) [45] Vasant, P.: Intelligent Computing and Optimization, vol. 866. Springer, Berlin (2018) [46] Vasant, P., Kose, U., Watada, J.: Metaheuristic techniques in enhancing the efficiency and performance of thermo-electric cooling devices. Energies 10(11), 1703(2017) [47] Vasant, P., Marmolejo, J.A., Litvinchev, I., Aguilar, R.R.: Nature-inspired meta-heuristics approaches for charging plug-in hybrid electric vehicle. Wireless Networks, pp. 1–14(2019) |