Journal of the Operations Research Society of China ›› 2025, Vol. 13 ›› Issue (4): 1108-1156.doi: 10.1007/s40305-023-00522-z
Previous Articles Next Articles
Xian-Peng Mao1, Ying Wang2, Yu-Ning Yang2,3
Received:2022-12-14
Revised:2023-09-18
Online:2025-12-30
Published:2025-12-19
Contact:
Zhi-Yi Tan
E-mail:tanzy@zju.edu.cn
Supported by:CLC Number:
Xian-Peng Mao, Ying Wang, Yu-Ning Yang. Computation over t-Product Based Tensor Stiefel Manifold: A Preliminary Study[J]. Journal of the Operations Research Society of China, 2025, 13(4): 1108-1156.
| [1] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009) [2] Comon, P.: Tensors: a brief introduction. IEEE Signal Process. Mag. 31(3), 44–53 (2014) [3] Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015) [4] Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017) [5] Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433(7), 1241–1253 (2010) [6] Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011) [7] Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013) [8] Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2019) [9] Miao, Y., Qi, L., Wei, Y.: T-Jordan canonical form and t-Drazin inverse based on the t-product. Commun. Appl. Math. Comput. Sci. 3(2), 201–220 (2021) [10] Lund, K.: The tensor t-function: a definition for functions of third-order tensors. Numer. Linear Algebra Appl. 27(3), e2288 (2020) [11] Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590, 258–303 (2020) [12] Liu, W.H., Jin, X.Q.: A study on T-eigenvalues of third-order tensors. Linear Algebra Appl. 612, 357–374 (2020) [13] Zheng, M.M., Huang, Z.H., Wang, Y.: T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming. Comput. Optim. Appl. 78(1), 239–272 (2021) [14] Qi, L., Luo, Z.: Tubal matrices (2021). arXiv:2105.00793 [15] Huang, W., Absil, P.A., Gallivan, K.A.: A Riemannian BFGS method without differentiated retraction for nonconvex optimization problems. SIAM J. Optim. 28(1), 470–495 (2018) [16] Hu, J., Jiang, B., Lin, L., Wen, Z., Yuan, Y.X.: Structured quasi-Newton methods for optimization with orthogonality constraints. SIAM J. Sci. Comput. 41(4), A2239–A2269 (2019) [17] Chen, S., Ma, S., So, A.M.C., Zhang, T.: Proximal gradient method for nonsmooth optimization over the Stiefel manifold. SIAM J. Optim. 30(1), 210–239 (2020) [18] Huang, W., Wei, K.: Riemannian proximal gradient methods. Math. Program. 194, 371–413 (2022) [19] Gao, B., Liu, X., Chen, X., Yuan, Y.X.: A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim. 28(1), 302–332 (2018) [20] Hu, J., Liu, X., Wen, Z.W., Yuan, Y.X.: A brief introduction to manifold optimization. J. Oper. Res. Soc. China 8(2), 199–248 (2020) [21] Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009) [22] Tu, L.W.: An Introduction to Manifolds, 2nd edn. Springer, Universitext, New York (2011) [23] Boumal, N.: An Introduction to Optimization on Smooth Manifolds. Cambridge University Press, Cambridge (2022) [24] Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors. Linear Algebra Appl. 439(1), 133–166 (2013) [25] Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed TT-rank. Numer. Math. 120(4), 701–731 (2012) [26] Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54(2), 447–468 (2014) [27] Heidel, G., Schulz, V.: A Riemannian trust-region method for low-rank tensor completion. Numer. Linear Algebra Appl. 25(6), e2175 (2018) [28] Steinlechner, M.: Riemannian optimization for high-dimensional tensor completion. SIAM J. Sci. Comput. 38(5), S461–S484 (2016) [29] Breiding, P., Vannieuwenhoven, N.: A Riemannian trust region method for the canonical tensor rank approximation problem. SIAM J. Optim. 28(3), 2435–2465 (2018) [30] Gilman, K., Tarzanagh, D.A., Balzano, L.: Grassmannian optimization for online tensor completion and tracking with the t-SVD. IEEE Trans. Signal Process. 70, 2152–2167 (2022) [31] Song, G.J., Wang, X.Z., Ng, M.K.: Riemannian conjugate gradient descent method for fixed multi rank third-order tensor completion. J. Comput. Appl. Math. 421, 114866 (2023) [32] Zhang, X., Yang, Z.P., Cao, C.G.: Inequalities involving Khatri–Rao products of positive semidefinite matrices. Appl. Math. E-Notes 2, 117–124 (2002) [33] Huang, W.: Optimization algorithms on Riemannian manifolds with applications. Ph.D. thesis, The Florida State University (2013) [34] Zhu, X.: A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Comput. Optim. Appl. 67(1), 73–110 (2017) [35] Edelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998) [36] Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 14(4), 927–949 (1993) [37] Pesquet-Popescu, B., Pesquet, J.C., Petropulu, A.P.: Joint singular value decomposition-a new tool for separable representation of images. In: International Conference on Image Processing. vol. 2, pp. 569–572. IEEE, Thessaloniki, Greece (2001) [38] Shashua, A., Levin, A.: Linear image coding for regression and classification using the tensor-rank principle. In: International Conference on Artificial Intelligence and Statistics. vol. 1, pp. I–42–I–49. IEEE Computer Society, Kauai, HI, USA (2001) [39] Allen, G.I.: Sparse higher-order principal components analysis. In: International Conference on Artificial Intelligence and Statistics. vol. 22, pp. 27–36. PMLR, La Palma, Canary Islands (2012) [40] Wang, Y., Dong, M., Xu, Y.: A sparse rank-1 approximation algorithm for high-order tensors. Appl. Math. Lett. 102, 106140 (2020) [41] Mao, X., Yang, Y.: Several approximation algorithms for sparse best rank-1 approximation to higherorder tensors. J. Glob. Optim. (2022). https://doi.org/10.1007/s10898-022-01140-4 [42] Kwak, N.: Principal component analysis based on 1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1672–1680 (2008) [43] Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor–tensor decompositions. SIAM J. Imaging Sci. 6(1), 437–463 (2013) [44] Schönemann, P.H.:Ageneralizedsolutionoftheorthogonalprocrustesproblem.Psychometrika 31(1), 1–10 (1966) [45] Lin, J., Huang, T.Z., Zhao, X.L., Jiang, T.X., Zhuang, L.: A tensor subspace representation-based method for hyperspectral image denoising. IEEE Tran. Geosci. Remote Sens. 59(9), 7739–7757 (2020) [46] Xu, S.S., Huang, T.Z., Lin, J., Chen, Y.: T-hy-demosaicing: hyperspectral reconstruction via tensor subspace representation under orthogonal transformation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 4842–4853 (2021) [47] Xu, T., Huang, T.Z., Deng, L.J., Yokoya, N.: An iterative regularization method based on tensor subspace representation for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022) [48] Hoover, R.C., Caudle, K., Braman, K.: Multilinear discriminant analysis through tensor-tensor eigendecomposition. In: ICMLA. pp. 578–584. IEEE, Orlando, FL (2018) [49] Ozdemir, C., Hoover, R.C., Caudle, K., Braman, K.: High-order multilinear discriminant analysis via order-n tensor eigendecomposition. Technical report, SSRN (2022). https://dx.doi.org/10.2139/ssrn. 4203431 [50] Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0 (2016). http://www.tensorlab.net [51] Lu, C.: Tensor-Tensor Product Toolbox. Carnegie Mellon University, Pittsburgh (2018) [52] Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495–517 (2018) [53] Kilmer, M.E., Horesh, L., Avron, H., Newman, E.: Tensor–tensor algebra for optimal representation and compression of multiway data. Proc. Natl. Acad. Sci. U.S.A. 118(28), e2015851118 (2021) [54] Kernfeld, E., Kilmer, M., Aeron, S.: Tensor–tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015) [55] Hall, B.C.: Lie Groups, Lie Algebras, and representations. Springer, Cham (2015) [56] Van Loan, C.: Computing integrals involving the matrix exponential. IEEE Trans. Autom. Control 23(3), 395–404 (1978) [57] Van Loan, C.F.: The ubiquitous kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000) [58] Kolda, T.G.: Multilinear operators for higher-order decompositions. Tech. Rep. SAND2006-2081, 923081, Citeseer (2006) |
| [1] | Li-Ming Li, Shi-Liang Wu, Cui-Xia Li. Some Properties of the Solution of the Extended Vertical Tensor Complementarity Problem [J]. Journal of the Operations Research Society of China, 2025, 13(4): 946-965. |
| [2] | Jin-Ling Zhao, Yue-Yang Dai. A Semidefinite Relaxation Method for Linear and Nonlinear Complementarity Problems with Polynomials [J]. Journal of the Operations Research Society of China, 2025, 13(1): 268-286. |
| [3] | Jiawang Nie, Li Wang, Zequn Zheng. Low Rank Tensor Decompositions and Approximations [J]. Journal of the Operations Research Society of China, 2024, 12(4): 847-873. |
| [4] | Jian-Ze Li, Shu-Zhong Zhang. Polar Decomposition-based Algorithms on the Product of Stiefel Manifolds with Applications in Tensor Approximation [J]. Journal of the Operations Research Society of China, 2024, 12(4): 874-920. |
| [5] | Tong-Tong Shang, Guo-Ji Tang. Expected Residual Minimization Method for Stochastic Tensor Variational Inequalities [J]. Journal of the Operations Research Society of China, 2024, 12(4): 1048-1071. |
| [6] | Kang-Kang Deng, Zheng Peng. Trace Lasso Regularization for Adaptive Sparse Canonical Correlation Analysis via Manifold Optimization Approach [J]. Journal of the Operations Research Society of China, 2024, 12(3): 573-599. |
| [7] | Chuan-Long Wang, Xiong-Wei Guo, Xi-Hong Yan. An Accelerated Proximal Gradient Algorithm for Hankel Tensor Completion [J]. Journal of the Operations Research Society of China, 2024, 12(2): 461-477. |
| [8] | Amina Sabir, Peng-Fei Huang, Qing-Zhi Yang. The Low-Rank Approximation of Fourth-Order Partial-Symmetric and Conjugate Partial-Symmetric Tensor [J]. Journal of the Operations Research Society of China, 2023, 11(4): 735-758. |
| [9] | Sheng-Long Hu. Certifying the Global Optimality of Quartic Minimization over the Sphere [J]. Journal of the Operations Research Society of China, 2022, 10(2): 241-287. |
| [10] | Yu-Xuan Jin, Jin-Ling Zhao. A Levenberg–Marquardt Method for Solving the Tensor Split Feasibility Problem [J]. Journal of the Operations Research Society of China, 2021, 9(4): 797-817. |
| [11] | Jiang Hu, Xin Liu, Zai-Wen Wen, Ya-Xiang Yuan. A Brief Introduction to Manifold Optimization [J]. Journal of the Operations Research Society of China, 2020, 8(2): 199-248. |
| [12] | Yan Li, Sheng-Long Hu, Jie Wang, Zheng-Hai Huang. An Introduction to the Computational Complexity of Matrix Multiplication [J]. Journal of the Operations Research Society of China, 2020, 8(1): 29-43. |
| [13] | Tao-Ran Fu, Jin-Yan Fan. Successive Partial-Symmetric Rank-One Algorithms for Almost Unitarily Decomposable Conjugate Partial-Symmetric Tensors [J]. Journal of the Operations Research Society of China, 2019, 7(1): 147-167. |
| [14] | Wen Li · Wei-Hui Liu · Seak-Weng Vong. On the Bound of the Eigenvalue in Module for a Positive Tensor [J]. Journal of the Operations Research Society of China, 2017, 5(1): 123-. |
| [15] | Bing Hua · Gu-Yan Ni · Meng-Shi Zhang. Computing Geometric Measure of Entanglement for Symmetric Pure States via the Jacobian SDP Relaxation Technique [J]. Journal of the Operations Research Society of China, 2017, 5(1): 111-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||