[1] Heydenreich, B., Muller, R., Uetz, M.: Games and mechanism design in machine scheduling: an introduction. Prod. Oper. Manag. 16, 437–454 (2007) [2] Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press (2020) [3] Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev. 3, 65–69 (2009) [4] Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT Numer. Math. 19, 312–320 (1979) [5] Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling. INFORMS J. Comput. 19, 52–63 (2007) [6] Chen, X., Epstein, L., Kleiman, E., van Stee, R.: Maximizing the minimum load: the cost of selfishness. Theor. Comput. Sci. 482, 9–19 (2013) [7] Gairing, M., Lucking, T., Mavronicolas, M., Monien, B.: The price of anarchy for polynomial social cost. Theor. Comput. Sci. 369(1–3), 116–135 (2006) [8] Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410, 3327–3336 (2009) [9] Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410, 1589–1598 (2009) [10] Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. Oper. Res. 60, 529–540 (2012) [11] Chen, B., Gurel, S.: Efficiency analysis of load balancing games with and without activation costs. J. Sched. 15(2), 157–164 (2012) [12] Chen, X., Hu, X., Ma, W., Wang, C.: Reducing price of anarchy of selfish task allocation with more selfishness. Theor. Comput. Sci. 507, 17–33 (2013) [13] Ye, D., Chen, L., Zhang, G.: On the price of anarchy of two-stage machine scheduling games. J. Comb. Optim. 42, 616–635 (2021) [14] Cheng, X., Li, R., Zhou, Y.: Tighter price of anarchy for selfish task allocation on selfish machines. J. Comb. Optim. 44, 1848–1879 (2022) [15] Belikovetsky, S., Tamir, T.: Load rebalancing games in dynamic systems with migration costs. Theor. Comput. Sci. 622, 16–33 (2016) [16] Hemon, S., de Rougemont, M., Santha, M.: Approximate Nash Equilibria for multi-player games. In: Proceeding of the 1st International Symposium on Algorithmic Game Theory, Lecture Notes in Computer Science, vol 4997, pp. 267–278 (2008) [17] Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash Equilibria in weighted congestion games: Existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3, Article 2 (2015) [18] Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous games. J. Econ. Theory 156, 207–245 (2015) [19] Even-Dar, E., Kesselman A., Mansour, Y.: Convergence time to Nash equilibrium in load balancing. ACM Trans. Algorithms 3(3), Article 32 (2007) |