[1] Doshi, B.T.: Queueing systems with vacations—a survey. Queueing Syst. 1, 29–66(1986) [2] Takagi, H.: Queueing Analysis: A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems. Part 1. Elsevier Science Publishers, Amsterdam (1991) [3] Tian, N., Zhang, Z.G.: Vacation Queueing Models: Theory and Applications. Springer, Berlin (2006) [4] Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV). Perform. Eval. 50(1), 41–52(2002) [5] Kim, J.D., Choi, D.W., Chae, K.C.: Analysis of queue–length distribution of the M/G/1 queue with working vacations. In: Hawaii International Conference on Statistics and Related Fields, pp. 5–8(2003) [6] Wu, D., Takagi, H.: M/G/1 queue with multiple working vacations. Perform. Eval. 63(7), 654–681(2006) [7] Li, J., Tian, N., Zhang, Z., Luh, H.: Analysis of the M/G/1 queue with exponentially working vacations—a matrix analytic approach. Queueing Syst. 61, 139–166(2009) [8] Lin, C., Ke, J.: Multi-server system with single working vacation. Appl. Math. Model. 33(7), 2967–2977(2009) [9] Zhang, M., Hou, Z.: Performance analysis of M/G/1 queue with working vacations and vacation interruption. J. Comput. Appl. Math. 234(10), 2977–2985(2010) [10] Jain, M., Sharma, G.C., Sharma, R.: Working vacation queue with service interruption and multi optional repair. Int. J. Inf. Manag. Sci. 22, 157–175(2011) [11] Gao, S., Liu, Z.: An M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Appl. Math. Model. 37(3), 1564–1579(2013) [12] Lee, D.H., Kim, B.K.: A note on the sojourn time distribution of an M/G/1 queue with a single working vacation and vacation interruption. Oper. Res. Perspect. 2, 57–61(2015) [13] Majid, S., Manoharan, P.: Analysis of an M/M/c queue with single and multiple synchronous working vacations. Appl. Appl. Math. 12(2), 671–694(2017) [14] Majid, S., Manoharan, P.: Analysis of an M/M/1 queue with working vacation and vacation interruption. Appl. Appl. Math. 14(1), 19–33(2019) [15] Yue, D., Yue, W., Xu, G.: Analysis of customers' impatience in an M/M/1 queue with working vacations. J. Ind. Manag. Optim. 8(4), 895–908(2012) [16] Goswami, V.: A discrete-time queue with balking, reneging, and working vacations. Int. J. Stoch. Anal. (2014). https://doi.org/10.1155/2014/358529 [17] Sudhesh, R., Azhagappan, A., Dharmaraja, S.: Transient analysis of M/M/1 queue with working vacation, heterogeneous service and customers' impatience. RAIRO Oper. Res. 51(3), 591–606(2017) [18] Bouchentouf, A.A., Yahiaoui, L.: On feedback queueing system with reneging and retention of reneged customers, multiple working vacations and Bernoulli schedule vacation interruption. Arab. J. Math. 6(1), 1–11(2017) [19] Bouchentouf, A.A., Guendouzi, A., Kandouci, A.: Performance and economic study of heterogeneous $ M/M/2/N $ feedback queue with working vacation and impatient customers. ProbStat Forum. 12(1), 15–35(2019) [20] Bouchentouf, A.A., Guendouzi, A.: Cost optimization analysis for an M$ ^{{\rm X}} $/M/c vacation queueing system with waiting servers and impatient customers. SeMA J. 76(2), 309–341(2019) [21] Bouchentouf, A.A., Guendouzi, A.: The $ {\rm M}^{\rm X}/{\rm M}/{\rm c} $ Bernoulli feedback queue with variant multiple working vacations and impatient customers: performance and economic analysis. Arab. J. Math. 9, 309–327(2020) [22] Yechiali, U., Naor, P.: Queueing problems with heterogeneous arrivals and service. Oper. Res. 19(3), 722–734(1971) [23] Yechiali, U.: A queueing-type birth-and-death process defined on a continuous-time Markov Chain. Oper. Res. 21(2), 604–609(1973) [24] Neuts, M.F.: A queue subject to extraneous phase changes. Adv. Appl. Prob. 3, 78–119(1971) [25] Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore (1981) [26] Baykal-Gursoy, M., Xiao, W.: Stochastic decomposition in M/M/$ \infty $ queues with Markov modulated service rates. Queueing Syst. 48(1), 75–88(2004) [27] Gupta, V., Wolf, AS., Harchol–Balter, M., Yechiali, U.: Fundamental characteristics of queues with fluctuating load. In: Proceedings of the ACM SIGMETRICS 2006 Conference Management and Modeling of Computer Systems, Saint Malo, France, pp. 203–215(2006) [28] Blom, J., Kella, O., Mandjes, M.: Markov-modulated infinite-server queues with general service times. Queueing Syst. 76, 403–424(2014) [29] Jiang, T., Liu, L., Li, J.: Analysis of the M/G/1 queue in multi-phase random environment with disasters. J. Math. Anal. Appl. 430, 857–873(2015) [30] Yu, S., Liu, Z.: Analysis of queues in a random environment with impatient customers. Acta Math. Appl. Sin. Engl. Ser. 33(4), 837–850(2017) [31] Mahabhashyam, S., Gautam, N.: On queues with Markov modulated service rates. Queueing Syst. 51, 89–113(2005) [32] D'Auria, B.: M/M/$ \infty $ queues in semi-Markovian random environment. Queueing Syst. 58, 221–237(2008) [33] Yang, G., Yao, L., Ouyang, Z.: The MAP/PH/N retrial queue in a random environment. Acta Math. Appl. Sin. 29(4), 725–738(2013) [34] Paz, N., Yechiali, U.: An M/M/1 queue in random environment with disasters. Asia Pac. J. Oper. Res. 31(3), 1450016(2014) [35] Li, J., Liu, L.: Performance analysis of a complex queueing system with vacations in random environment. Adv. Mech. Eng. 9(8), 1–9(2017) [36] Padmavathy, R., Kalidass, K., Ramanath, K.: Vacation queues with impatient customers and a waiting server. Int. J. Latest Trends Soft. Eng. 1, 10–19(2011) [37] Altman, E., Yechiali, U.: Analysis of customers impatience in queues with server vacations. Queueing Syst. 52, 261–279(2006) [38] Rardin, R.L.: Optimization in Operations Research. Prentice-Hall, Upper Saddle River (1997) [39] Vijaya Laxmi, P., Goswami, V., Jyothsna, K.: Optimization of balking and reneging queue with vacation interruption under N-policy. J. Optim. (2013). https://doi.org/10.1155/2013/683708 [40] Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, Springer, New York (2006) [41] Yue, D., Yue, W., Zhao, G.: Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Manag. Optim. 12(2), 653–666(2016) |