[1] Held, M., Karp, R.M.: The traveling-Salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970) [2] Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, Part I: the chinese postman problem. Oper. Res. 43(2), 231–242 (1995) [3] McFarlane, D., Giannikas, V., Lu, W.: Intelligent logistics: involving the customer. Comput. Ind. 81, 105–115 (2016) [4] Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The traveling Salesman problem: a computational study. Princeton University Press, USA (2006) [5] Held, S., Müller, D., Rotter, D., Scheifele, R., Traub, V., Vygen, J.: Global routing with timing constraints. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(2), 406–419 (2017) [6] Laporte, G.: The Traveling Salesman Problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992) [7] Chauhan, C., Gupta, R., Pathak, K.: Survey of methods of solving TSP along with its implementation using dynamic programming approach. Int. J. Comput. Appl. 52(4), 12–19 (2012) [8] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) [9] Keld, H.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000) [10] Johnson, D.S.: Local optimization and the traveling salesman problem. In: International Colloquium on Automata, Languages, and Programming, pp. 446–461 (1990) [11] Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M., Ⅱ.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977) [12] Colorni, A., Dorigo, M., Maniezzo, V., : Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, vol. 142, pp. 134–142. Paris, France (1991) [13] Hlaing, Z.C.S.S., Khine, M.A.: Solving traveling salesman problem by using improved ant colony optimization algorithm. Int. J. Inf. Educ. Technol. 1(5), 404 (2011) [14] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983) [15] Geng, X., Chen, Z., Yang, W., Shi, D., Zhao, K.: Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 11(4), 3680–3689 (2011) [16] Glover, F.: Tabu Search-Part Ⅱ. ORSA J. Comput. 2(1), 4–32 (1990) [17] Basu, S.: Tabu search implementation on traveling salesman problem and its variations: a literature survey (2012) https://doi.org/10.4236/ajor.2012.22019 [18] Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. arXiv:1807.05517 (2018) [19] Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological Tour d’Horizon. Eur. J. Oper. Res. 290(2), 405–421 (2020) [20] Vinyals, O., Fortunato, M., Jaitly, N.: Pointer Networks. In: Advances in Neural Information Processing Systems, pp. 2692–2700 (2015) [21] Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. arXiv: 1906.01227 (2019) [22] Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: 5th International Conference on Learning Representations. arXiv:1611.09940 (2017) [23] Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: 7th International Conference on Learning Representations. arXiv:1803.08475 (2019) [24] Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv: 1911.04936 (2019) [25] Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017) [26] Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.: Learning heuristics for the TSP by policy gradient. In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research - 15th International Conference, CPAIOR, vol. 10848, pp. 170–181 (2018) [27] Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. arXiv:2103.03012 (2021) [28] Goh, Y.L., Lee, W.S., Bresson, X., Laurent, T., Lim, N.: Combining reinforcement learning and optimal transport for the traveling salesman problem. arXiv:2203.00903 (2022) [29] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973) [30] Hopfield, J.J., Tank, D.W.:“Neural”Computation ofdecisionsin optimization problems.Biol.Cybern. 52(3), 141–152 (1985) [31] Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics for solving the travelling salesman problem. arXiv: 1912.05784 (2019) [32] Fu, Z.-H., Qiu, K.-B., Zha, H.: Generalize a small pre-trained model to arbitrarily large tsp instances. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7474–7482 (2021) [33] Ouyang, W., Wang, Y., Han, S., Jin, Z., Weng, P.: Improving generalization of deep reinforcement learning-based tsp solvers. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 01–08. IEEE (2021) [34] Xin, L., Song, W., Cao, Z., Zhang, J.: Neurolkh: Combining deep learning model with lin-kernighanhelsgaun heuristic for solving the traveling salesman problem. Adv. Neural. Inf. Process. Syst. 34, 7472–7483 (2021) [35] Mazyavkina, N., Ivanov, S., Burnaev, E., Sviridov, S.: Reinforcement learning for combinatorial optimization: a survey. Comput. Oper. Res. 134, 105400–105400 (2021) [36] Zheng, J., He, K., Zhou, J., Jin, Y., Li, C.-M.: Reinforced lin-kernighan-helsgaun algorithms for the traveling salesman problems. Knowl.-Based Syst. 260, 110144 (2023) [37] Ding, C., Cheng, Y., He, M.: Two-level genetic algorithm for clustered traveling salesman problem with application in large-scale tsps. Tsinghua Sci. Technol. 12(4), 459–465 (2007) [38] Park, D.C., Figueras, A.L., Chen, C.: A hierarchical approach for solving large-scale traveling salesman problem. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol. 7, pp. 4613–4618. IEEE (1994) [39] Yang, J.-Q., Yang, J.-G., Chen, G.-L.: Solving large-scale tsp using adaptive clustering method. In: 2009 Second International Symposium on Computational Intelligence and Design, vol. 1, pp. 49–51. IEEE (2009) [40] Cook, W., Seymour, P.: Tour merging via branch-decomposition. Informs J. Comput. 15(3), 233–248 (2003) [41] Deng, Y., Liu, Y., Zhou, D.: An improved genetic algorithm with initial population strategy for symmetric tsp. Math. Probl. Eng. 2015, 212794 (2015). https://doi.org/10.1155/2015/212794 [42] Bazylevych, R.P., Kutelmakh, R., Dupas, R., Bazylevych, L.: Decomposition algorithms for largescale clustered tsp. In: Indian International Conference on Artificial Intelligence pp. 255–267 (2007) [43] Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances In Neural Information Processing Systems, pp. 849–856 (2002) [44] von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007) [45] Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Pattern Recognit. 36(2), 451–461 (2003) [46] Cho, K., Merriënboer, B.V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014) [47] Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8(3–4), 229–256 (1992) [48] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations. arXiv:1412.6980 (2015) [49] Google: Google’s optimization tools(OR-Tools) (2020). https://developers.google.com/optimization/routing [50] TSPLIB. http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/ |