[1] Jelinski, Z., Moranda, P.: Software reliability research. In: Statistical Computer Performance Evaluation, pp. 465–484. Elsevier, Amsterdam (1972) [2] Littlewood, B., Verrall, J.L.: A Bayesian reliability growth model for computer software. J. R. Stat. Soc. Ser. C (Appl. Stat.) 22(3), 332–346 (1973) [3] Jewell, W.S.: Bayesian estimation of undetected errors. Bayesian Statistics (1983) [4] Jewell, W.S.: Bayesian extensions to a basic model of software reliability. IEEE Trans. Softw. Eng. 12, 1465–1471 (1985) [5] Ho, T.F., Chan, W.C., Chung, C.G.: A quantum modification to the Jelinski-Moranda software reliability model. In: Proceedings of the 33rd Midwest Symposium on Circuits and Systems, pp. 339–342 (1990) [6] Wang, Y., Yip, P.S., Hayakawa, Y.: A frailty model for detecting number of faults in a system. Stat. Sin. 12, 1001–1013 (2002) [7] Mahapatra, G.S., Roy, P.: Modified Jelinski-Moranda software reliability model with imperfect debugging phenomenon. Int. J. Comput. Appl. 48(18), 38–46 (2012) [8] Al Turk, L.I., Alsolami, E.G.: Jelinski-Moranda software reliability growth model: a brief literature and modification. Int. J. Softw. Eng. Appl. (2016). https://doi.org/10.5121/ijsea.2016.7204 [9] Majeske, K.D.: A non-homogeneous Poisson process predictive model for automobile warranty claims. Reliab. Eng. Syst. Saf. 92(2), 243–251 (2007) [10] Fierro, R., Leiva, V., Ruggeri, F., Sanhueza, A.: On a Birnbaum-Saunders distribution arising from a non-homogeneous Poisson process. Stat. Probab. Lett. 83(4), 1233–1239 (2013) [11] Leonenko, N., Scalas, E., Trinh, M.: The fractional non-homogeneous Poisson process. Stat. Probab. Lett. 120, 147–156 (2017) [12] Green, L.: Queueing analysis in healthcare. In: Patient Flow: Reducing Delay in Healthcare Delivery, pp. 281–307. Springer, Berlin (2006) [13] Alanis, R., Ingolfsson, A., Kolfal, B.: A Markov chain model for an ems system with repositioning. Prod. Oper. Manag. 22(1), 216–231 (2013) [14] Cire, A.A., Diamant, A.: Dynamic scheduling of home care patients to medical providers. Prod. Oper. Manag. 31(11), 4038–4056 (2022) [15] Lamar, D.G., Zúñiga, J.S., Alonso, A.R., González, M.R., Álvarez, M.M.H.: A very simple control strategy for power factor correctors driving high-brightness LEDs. IEEE Trans. Power Electron. 24(8), 2032–2042 (2009) [16] Yu, Z., Baxley, R.J., Zhou, G.T.: Brightness control in dynamic range constrained visible light OFDM systems. In: 2014 23rd Wireless and Optical Communication Conference, pp. 1–5. IEEE (2014) [17] Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16(4), 764–779 (1979) [18] Lucantoni, D.M.: New results on the single server queue with a batch Markovian arrival process. Commun. Stat. Stoch. Models 7(1), 1–46 (1991) [19] Breuer, L.: From Markov Jump Processes to Spatial Queues. Springer Science & Business Media, Berlin (2003) [20] Breuer, L., Baum, D.: An Introduction to Queueing Theory: And Matrix-Analytic Methods. Springer Science & Business Media, Berlin (2005) [21] Bladt, M., Nielsen, B.F.: Matrix-Exponential Distributions in Applied Probability, vol. 81. Springer, Berlin (2017) [22] Gallager, R.G.: Discrete Stochastic Processes. OpenCourseWare: Massachusetts Institute of Technology, Cambridge (2011) |