[1] Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl. 59, 71–97 (1988) [2] Loridan, P., Morgan, J.: Weak via strong Stackelberg problem?: new results. J. Global Optim. 8, 263–287 (1996) [3] Bard, J.F.:PracticalBilevelOptimization:Algorithmsand Applications.Kluwer AcademicPublishers, Dordrecht (1998) [4] Dempe, S.: Fondations of Bilevel Programming. Kluwer Academic Publishers, Boston (2002) [5] Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondiffirentiable and Two-Level Mathematical Programming. Kluwer Academic Publishers, Boston (1997) [6] Aboussoror, A., Loridan, P.: Existence of solutions to two-level optimization problems with nonunique lower-level solutions. J. Math. Anal. Appl. 254, 348–357 (2001) [7] Aboussoror, A.: Weak bilevel programming problems?: existence of solutions. Adv. Math. Res. 1, 83–92 (2002) [8] Aboussoror, A., Mansouri, A.: Weak linear bilevel programming problems: existence of solutions via a penalty method. J. Math. Anal. Appl. 304, 399–408 (2005) [9] Aboussoror, A., Mansouri, A.: Existence of solutions to weak nonlinear bilevel problems via MinSup and D.C. problems. RAIRO Oper. Res. 42, 87–102 (2008) [10] Aboussoror, A., Adly, S., Jalby, V.: Weak nonlinear bilevel problems: existence of solutions via reverse convex and convex maximization problems. J. Ind. Manage. Optim. 7, 559–571 (2011) [11] Loridan, P., Morgan, J.: On strict -solutions for a two-level optimization problem, Operations Research Proceedings of the International Conference on Operations Research 90 in Vienna, (eds. W. Buhler, G. Feichtinger, F. Hartl, F. J. Radermacher and P. Stahly), pp. 165-172, Springer Verlag, Berlin (1992) [12] Lucchetti, R., Mignanego, F., Pieri, G.: Existence theorems of equilibrium points in Stackelberg games with constraints. Optimization 18, 857–866 (1987) [13] Aboussoror, A., Loridan, P.: Existence and approximation results involving regularized constrained Stackelberg problems. J. Math. Anal. Appl. 188, 101–117 (1994) [14] Dassanayaka, S.: Methods of variational analysis in pessimistic bilevel programming, Ph. D. Thesis, Department of Mathematics, Wayne State University, Detroit (2010) [15] Dempe, S., Mordukhovich, B.S., Zemkoho, A.: Necessary optimality conditions in pessimistic bilevel programming. Optimization 63, 505–533 (2014) [16] Lignola, M.B., Morgan, J.: Inner regularizations and viscosity solutions for pessimistic bilevel optimization problems. J. Optim. Theory Appl. 173, 183–202 (2017) [17] Loridan, P., Morgan, J.: Approximate solutions for two-level optimization problems. In : Trends in Mathematical Optimization (eds. K. H. Hoffman, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe), International Series of Numerical Math. 84, pp. 181-196, Birkhaüser Verlag, Basel (1988) [18] Loridan, P., Morgan, J.: New results on approximate solutions in two-level optimization. Optimization 20, 819–836 (1989) [19] Kuratowski, C.: Topology. Academic Press, New York (1966) [20] Berge, C.: Topological spaces. Mac Millan, New York (1963) [21] Lignola, M.B., Morgan, J.: Semicontinuities ofmarginalfunctions in a sequential setting.Optimization 24, 241–252 (1994) [22] Azé, D.: Eléments d’analyse convexe et variationnelle. Ellipse, Paris (1997) [23] Attouch, H.: Variational Convergence of Functions and Operators. Pitman, Boston (1984) [24] Dontchev, A.L., Zolezzi, T.: Well-posed Optimization Problems. Lecture Notes in Mathematics, vol. 1543. Springer Verlag, Berlin (1993) [25] Zolezzi, T.: Stability analysis in optimization. In Optimization and Realated Fields, Edited by R. Conti, E. Di Giorgi and F. Giannessi, Lectures Notes in Math 1190 (1986) |