[1] Vigna, E., Haberman, S.: Optimal investment strategy for defined contribution pension schemes. Insur. Math. Econ. 28(2), 233–262 (2001) [2] Devolder, P., Princep, M.B., Fabian, I.D.: Stochastic optimal control of annuity contracts. Insur. Math. Econ. 33(2), 227–238 (2003) [3] Gao, J.W.: Stochastic optimal control of DC pension funds. Insur. Math. Econ. 42(3), 1159–1164 (2008) [4] Han, N.W., Hung, M.W.: Optimal asset allocation for DC pension plans under inflation. Insur. Math. Econ. 51(1), 172–181 (2012) [5] Yao, H.X., Yang, Z., Chen, P.: Markowitz’s mean-variance defined contribution pension fund management under inflation: a continuous-time model. Insur. Math. Econ. 53(3), 851–863 (2013) [6] Deelstra, G., Grasselli, M., Koehl, P.F.: Optimal design of the guarantee for Defined contribution Funds. J. Econ. Dyn. Contr. 28(11), 2239–2260 (2004) [7] Wu, H.L., Zeng, Y.: Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk. Insur. Math. Econ. 64, 396–408 (2015) [8] Dong, Y., Zheng, H.: Optimal investment of DC pension plan under short-selling constraints and portfolio insurance. Insur. Math. Econ. 85, 47–59 (2019) [9] Menoncin, F., Vigna, E.: Mean-variance dynamic optimality for DC pension schemes. Euro. Actuar. J. 10(1), 125–148 (2020) [10] Murthi, M., Orszag, J.M., Orszag, P.R.: Administrative costs under a decentralized approach to individual accounts: Lessons from the United Kingdom. (1999) https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0E207B88F5FC7550F6C26EE7E5C91720?doi=10.1.1.200.2348&rep=rep1&type=pdf [11] Whitehouse, E.: Administrative charges for funded pensions: comparison and assessment of 13 countries. (2002) https://search.oecd.org/daf/fin/private-pensions/2067293.pdf [12] Kritzer, B.E., Kay, S.J., Sinha, T.: Next generation of individual account pension reforms in Latin America. Soc. Secur. Bull. 71, 35–76 (2011) [13] Queisser, M.: Pension reform and private pension funds in Peru and Colombia. (1997) https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.949.4294&rep=rep1&type=pdf [14] Chávez–Bedoya, Luis: Determining equivalent charges on flow and balance in individual account pension systems. J. Econ. Finance Admin. Sci. 21(40), 2–7 (2016) [15] Chen, H.J., Yin, Z., Xie, T.H.: Determining equivalent administrative charges for defined contribution pension plans under CEV model. Math. Probl. Eng. 11, 1–10 (2018) [16] Chavez-Bedoya, L., Castaneda, R.: A benchmarking approach to track and compare administrative charges on flow and balance in individual account pension systems. Insur. Math. Econ. 97, 7–23 (2021) [17] He, L., Liang, Z.X.: Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework. Insur. Math. Econ. 53(3), 643–649 (2013) [18] Li, D.P., Rong, X.M., Zhao, H., Yi, B.: Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model. Insur. Math. Econ. 72, 6–20 (2017) [19] Lai, C., Liu, S.C., Wu, Y.H.: Optimal portfolio selection for a defined-contribution plan under two administrative fees and return of premium clauses. J. Comput. Appl. Math. 398, 1–19 (2021) [20] Kohler, H.P., Kohler, I.: Frailty modeling for adult and old age mortality: the application of a modified De Moivre hazard function to sex differentials in mortality. (2000) https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.6712rep=reptype=pdf [21] Beckers, S.: The constant elasticity of variance model and its implications for option pricing. J. Financ. 35(3), 661–673 (1980) |