Journal of the Operations Research Society of China ›› 2025, Vol. 13 ›› Issue (1): 1-55.doi: 10.1007/s40305-023-00493-1
Meng-Yu Huang1, Ling-Ying Huang1, Yu-Xing Zhong1, Hui-Wen Yang1, Xiao-Meng Chen1, Wei Huo1, Jia-Zheng Wang2, Fan Zhang2, Bo Bai2, Ling Shi1
Received:
2022-11-24
Revised:
2023-03-28
Published:
2025-03-20
Contact:
Meng-Yu Huang, Ling-Ying Huang, Yu-Xing Zhong, Hui-Wen Yang, Xiao-Meng Chen, Wei Huo, Jia-Zheng Wang, Fan Zhang, Bo Bai, Ling Shi
E-mail:mhuangak@connect.ust.hk;lhuangaq@connect.ust.hk;yzhongbc@connect.ust.hk;hyangbr@connect.ust.hk;xiaomeng.chen@connect.ust.hk;whuoaa@connect.ust.hk;wang.jiazheng@huawei.com;zhang.fan2@huawei.com;baibo8@huawei.com;eesling@ust.hk
CLC Number:
Meng-Yu Huang, Ling-Ying Huang, Yu-Xing Zhong, Hui-Wen Yang, Xiao-Meng Chen, Wei Huo, Jia-Zheng Wang, Fan Zhang, Bo Bai, Ling Shi. MILP Acceleration: A Survey from Perspectives of Simplex Initialization and Learning-Based Branch and Bound[J]. Journal of the Operations Research Society of China, 2025, 13(1): 1-55.
[1] CPLEX:http://www.ilog.com/products/cplex [2] LINDO:http://www.lindo.com [3] Achterberg, T.:SCIP:solving constraint integer programs. Math. Program. Comput. 1, 1-41(2009) [4] Land, A.H., Doig, A.G.:An automatic method for solving discrete programming problems. In: Econometrica vol. 28, pp. 497-520(1960) [5] Kantorovich, L.V.:The mathematical method of production planning and organization. Manag. Sci. 6(4), 363-422(1939) [6] Dantzig, G.B.:Maximization of a linear function of variables subject to linear inequalities. Act. Anal. Prod. Alloc. 13, 339-347(1951) [7] Karmarkar, N.:A new polynomial-time algorithm for linear programming. In:Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302-311(1984) [8] Dantzig, G.B.:Linear Programming and Extensions, vol. 48. Princeton University Press, Princeton (1965) [9] Ralphs, T., Güzelsoy, M.:Duality and warm starting in integer programming. In:The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference (2006) [10] Murshed, M.M., Sarward, B.M., Sattar, M.A., Kaykobad, M.:A New Polynomial Algorithm for Linear Programming Problem. NEC Research Institute (1993) [11] Stojković, N.V., Stanimirović, P.S.:Two direct methods in linear programming. Eur. J. Oper. Res. 131(2), 417-439(2001) [12] Junior, H.V., Lins, M.P.E.:An improved initial basis for the simplex algorithm. Comput. Oper. Res. 32(8), 1983-1993(2005) [13] Hu, J.:A note on an improved initial basis for the simplex algorithm. Comput. Oper. Res. 34(11), 3397-3401(2007) [14] Bergström, P.:Plot 2D/3D region. https://www.mathworks.com/matlabcentral/fileexchange/9261- plot-2d-3d-region. MATLAB Central File Exchange. Accessed 26 July 2021(2021) [15] Pan, P.:A variant of the dual pivoting rule in linear programming. J. Inf. Optim. Sci. 15(3), 405-413(1994) [16] Wolfe, P.:The composite simplex algorithm. SIAM Rev. 7(1), 42-54(1965) [17] Guerrero-Garcia, P., Santos-Palomo, A.:Phase I cycling under the most-obtuse-angle pivot rule. Eur. J. Oper. Res. 167(1), 20-27(2005) [18] Galabova, I., Hall, J.:The idiot crash quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems. Optim. Methods Softw. 35(3), 488- 501(2020) [19] Luh, H., Tsaih, R.:An efficient search direction for linear programming problems. Comput. Oper. Res. 29(2), 195-203(2002) [20] Chaderjian, B.J., Gao, T.:Comments on an efficient search direction for linear programming problems by H. Luh and R. Tsaih. Comput. Oper. Res. 30(8), 1255-1258(2003) [21] Al-Najjar, C., Malakooti, B.:Hybrid-LP:finding advanced starting points for simplex, and pivoting LP methods. Comput. Oper. Res. 38(2), 427-434(2011) [22] Maros, I.:Computational Techniques of the Simplex Method, vol. 61. Springer, Berlin (2012) [23] Maros, I., Mitra, G.:Strategies for creating advanced bases for large-scale linear programming problems. INFORMS J. Comput. 10(2), 248-260(1998) [24] Ploskas, N., Sahinidis, N.V., Samaras, N.:A triangulation and fill-reducing initialization procedure for the simplex algorithm. Math. Program. Comput. 66, 1-18(2020) [25] Bixby, R.E.:Implementing the simplex method:the initial basis. ORSA J. Comput. 4(3), 267-284(1992) [26] Vaidya, N., Kasturiwale, N.:Quick simplex algorithm for optimal solution to the linear programming problem along with theoretical proof of formulae. Int. J. Latest Trend Math. 4(2), 183-200(2014) [27] Chvatal, V., Chvatal, V., et al.:Linear Programming. Macmillan, New York (1983) [28] Bertsimas, D., Tsitsiklis, J.N.:Introduction to Linear Optimization, vol. 6. Athena Scientific, Belmont (1997) [29] Nabli, H., Chahdoura, S.:Algebraic simplex initialization combined with the nonfeasible basis method. Eur. J. Oper. Res. 245(2), 384-391(2015) [30] Nabli, H.:An overview on the simplex algorithm. Appl. Math. Comput. 210(2), 479-489(2009) [31] Wunderling, R.:Paralleler und objektorientierter simplex. PhD thesis, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1996) [32] Pan, P.:Primal perturbation simplex algorithms for linear programming. J. Comput. Math. 66, 587- 596(2000) [33] Gould, N.I., Reid, J.K.:New crash procedures for large systems of linear constraints. Math. Program. 45(1), 475-501(1989) [34] Erisman, A., Grimes, R., Lewis, J., Poole, W., Jr.:A structurally stable modification of Hellerman- Rarick's P4 algorithm for reordering unsymmetric sparse matrices. SIAM J. Numer. Anal. 22(2), 369-385(1985) [35] Zionts, S.:The Criss-Cross method for solving linear programming problems. Manag. Sci. 15(7), 426-445(1969) [36] Pan, P.:Linear Programming Computation. Springer, Berlin (2014) [37] Ge, D., Wang, C., Xiong, Z., Ye, Y.:From an interior point to a corner point:smart crossover. arXiv:2102.09420(2021) [38] Pan, P.:Practical finite pivoting rules for the simplex method. Oper. Res. Spektr. 12(4), 219-225(1990) [39] Pan, P.:Ratio-test-free pivoting rules for a dual phase-1 method. In:Proceeding of the Third Conference of Chinese SIAM, pp. 245-249. Tsinghua University Press, Beijing (1994) [40] Pan, P.:The most-obtuse-angle row pivot rule for achieving dual feasibility:a computational study. Eur. J. Oper. Res. 101(1), 164-176(1997) [41] Koberstein, A., Suhl, U.H.:Progress in the dual simplexmethod for large scale LP problems:practical dual phase 1 algorithms. Comput. Optim. Appl. 37(1), 49-65(2007) [42] Pan, P.:A new perturbation simplex algorithm for linear programming. J. Comput. Math. 66, 233-242(1999) [43] Maros, I.:A general phase-1 method in linear programming. Eur. J. Oper. Res. 23(1), 64-77(1986) [44] Maros, I.:A piecewise linear dual phase-1 algorithm for the simplex method. Comput. Optim. Appl. 26(1), 63-81(2003) [45] Wunderling, R.:Paralleler und objektorientierter simplex. PhD thesis, Technische Universität, Berlin (1996) [46] Achterberg, T., Koch, T., Martin, A.:Branching rules revisited. Oper. Res. Lett. 33(1), 42-54(2005) [47] Alvarez, A.M., Louveaux, Q., Wehenkel, L.:A supervised machine learning approach to variable branching in branch-and-bound. In:Ecml. Citeseer (2014) [48] Alvarez, A.M., Louveaux, Q., Wehenkel, L.:A machine learning-based approximation of strong branching. INFORMS J. Comput. 29(1), 185-195(2017) [49] Marcos Alvarez, A., Wehenkel, L., Louveaux, Q.:Online Learning for Strong Branching Approximation in Branch-and-Bound (2016) [50] Geurts, P., Ernst, D., Wehenkel, L.:Extremely randomized trees. Mach. Learn. 63(1), 3-42(2006) [51] Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.:Learning to branch in mixed integer programming. In:Proceedings of the AAAI Conference on Artificial Intelligence, pp. 724-731, AAAI Press (2016) [52] Falk, P.G.:Experiments in mixed integer linear programming in a manufacturing system. Omega 8(4), 473-484(1980) [53] Balcan, M.-F., Dick, T., Sandholm, T., Vitercik, E.:Learning to branch. In:Proceedings of the 35th International Conference on Machine Learning, pp. 344-353. PMLR (2018) [54] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.:Exact combinatorial optimization with graph convolutional neural networks. arXiv:1906.01629(2019) [55] Gupta, P., Gasse, M., Khalil, E.B., Kumar, M.P., Lodi, A., Bengio, Y.:Hybrid models for learning to branch. arXiv:2006.15212(2020) [56] Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O'Donoghue, B., Sonnerat, N., Tjandraatmadja, C., Wang, P., et al.:Solving mixed integer programs using neural networks. arXiv:2012.13349(2020) [57] Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al.:The scip optimization suite 7.0(2020) https://optimization-online.org/?p=16345 [58] Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.:Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies (2020) [59] Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.:The scip optimization suite 6.0. Technical Report 18-26, ZIB, Takustr. 7, 14195, Berlin (2018) [60] Hansknecht, C., Joormann, I., Stiller, S.:Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem. arXiv:1805.01415(2018) [61] Sun, H., Chen, W., Li, H., Song, L.:Improving learning to branch via reinforcement learning. In: Learning Meets Combinatorial Algorithms at NeurIPS2020(2020). https://openreview.net/forum?id=z4D7-PTxTb [62] Achterberg, T., Berthold, T.:Hybrid branching. In:International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 309-311. Springer (2009) [63] Etheve, M., Alès, Z., Bissuel, C., Juan, O., Kedad-Sidhoum, S.:Reinforcement learning for variable selection in a branch and bound algorithm. In:Hebrard, E., Musliu, N.(eds.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 176-185. Springer, Cham (2020) [64] Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.:Dash:dynamic approach for switching heuristics. Eur. J. Oper. Res. 248(3), 943-953(2016) [65] Kadioglu, S., Malitsky, Y., Sellmann, M.:Non-model-based search guidance for set partitioning problems. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26, pp. 493-498(2012) [66] Lodi, A., Zarpellon, G.:On learning and branching:a survey. Top 25(2), 207-236(2017) [67] Linderoth, J.T., Savelsbergh, M.W.:A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11(2), 173-187(1999) [68] Sabharwal, A., Samulowitz, H., Reddy, C.:Guiding combinatorial optimization with uct. In:International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, pp. 356-361. Springer (2012) [69] Glover, F.:Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533-549(1986) [70] Glover, F., Greenberg, H.J.:New approaches for heuristic search:a bilateral linkage with artificial intelligence. Eur. J. Oper. Res. 39(2), 119-130(1989) [71] Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.:Reactive dialectic search portfolios for maxsat. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, pp. 765-772(2017) [72] Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.:Model-based genetic algorithms for algorithm configuration. In:Proceedings of the 24th International Conference on Artificial Intelligence, pp. 733-739(2015) [73] Daumé, H., Langford, J., Marcu, D.:Search-based structured prediction. Mach. Learn. 75(3), 297- 325(2009) [74] Chang, K.-W., Krishnamurthy, A., Agarwal, A., Daume, H., Langford, J.:Learning to search better than your teacher. In:International Conference on Machine Learning, pp. 2058-2066. PMLR (2015) [75] He, H., Daume, H., III., Eisner, J.M.:Learning to search in branch and bound algorithms. Adv. Neural Inf. Process. Syst. 27, 3293-3301(2014) [76] Yilmaz, K., Yorke-Smith, N.:A study of learning search approximation in mixed integer branch and bound:node selection in scip. AI 2(2), 150-178(2021) [77] Hottung, A., Tanaka, S., Tierney, K.:Deep learning assisted heuristic tree search for the container pre-marshalling problem. Comput. Oper. Res. 113, 104781(2020) [78] Karapetyan, D., Punnen, A.P., Parkes, A.J.:Markov chainmethods for the bipartite Boolean quadratic programming problem. Eur. J. Oper. Res. 260(2), 494-506(2017) [79] Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y.:Learning to run heuristics in tree search. In:Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 659-666(2017) [80] Hendel, G.:Adaptive Large Neighborhood Search for Mixed Integer Programming. Math. Prog. Comp. 14, 185-221(2022) [81] Hottung, A., Tierney, K.:Neural large neighborhood search for the capacitated vehicle routing problem. arXiv:1911.09539(2019) [82] Addanki, R., Nair, V., Alizadeh, M.:Neural large neighborhood search. In:Learning Meets Combinatorial Algorithms NeurIPS Workshop (2020) [83] Song, J., Lanka, R., Yue, Y., Dilkina, B.:A general large neighborhood search framework for solving integer programs. arXiv:2004.00422(2020) [84] Xavier, Á.S., Qiu, F., Ahmed, S.:Learning to solve large-scale security-constrained unit commitment problems. INFORMS J. Comput. 6, 66(2020) [85] Ding, J., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.:Accelerating primal solution findings for mixed integer programs based on solution prediction. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1452-1459(2020) [86] Han, S., Mao, H., Dally, W.J.:Deep compression:compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv:1510.00149(2015) [87] Shen, Y., Shi, Y., Zhang, J., Letaief, K.B.:Lorm:learning to optimize for resource management in wireless networks with few training samples. IEEE Trans. Wirel. Commun. 19(1), 665-679(2019) [88] Lee, M., Yu, G., Li, G.Y.:Learning to branch:accelerating resource allocation in wireless networks. IEEE Trans. Veh. Technol. 69(1), 958-970(2019) [89] Aglin, G., Nijssen, S., Schaus, P.:Learning optimal decision trees using caching branch-and-bound search. In:Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3146-3153(2020) [90] Binney, J., Sukhatme, G.S.:Branch and bound for informative path planning. In:2012 IEEE International Conference on Robotics and Automation, pp. 2147-2154. IEEE (2012) [91] Dey, S.S., Molinaro, M.:Theoretical challenges towards cutting-plane selection. Math. Program. 170(1), 1-30(2018) [92] Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan, M., Hao, J., Yu, Y., Wang, J.:Learning to select cuts for efficient mixed-integer programming. Pattern Recognit. 123, 108353(2022) [93] Babenko, B.:Multiple instance learning:algorithms and applications. View Article PubMed/NCBI Google Scholar, pp. 1-19(2008) [94] Balcan, M.-F.F., Prasad, S., Sandholm, T., Vitercik, E.:Sample complexity of tree search configuration:cutting planes and beyond. Adv. Neural Inf. Process. Syst. 34, 4015-4027(2021) [95] Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C.:Learning to cut by looking ahead: cutting plane selection via imitation learning. In:International Conference on Machine Learning, pp. 17584-17600. PMLR (2022) [96] Tang, Y., Agrawal, S., Faenza, Y.:Reinforcement learning for integer programming:Learning to cut. In:Singh, A.H.D III (Eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9367-9376. PMLR (2020) [97] Turner, M., Koch, T., Serrano, F., Winkler, M.:Adaptive cut selection in mixed-integer linear programming. arXiv:2202.10962(2022) [98] Anonymous:Learning cut selection for mixed-integer linear programming via hierarchical sequence model. In:Submitted to the Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=Zob4P9bRNcK [99] Dey, S.S., Kazachkov, A.M., Lodi, A., Munoz, G.:Cutting plane generation through sparse principal component analysis (2021). http://www.optimization-online.org/DB_HTML/2021/02/8259.html [100] Baltean-Lugojan, R., Bonami, P., Misener, R., Tramontani, A.:Selecting cutting planes for quadratic semidefinite outer-approximation via trained neural networks. Technical report, Technical Report, CPLEX Optimization, IBM (2018) [101] Achterberg, T.:Constraint Integer Programming Verlag:Dr. Hut (2007) [102] Wesselmann, F., Stuhl, U.:Implementing Cutting Plane Management and Selection Techniques (2012) https://optimization-online.org/?p=12261 [103] Dey, S.S., Molinaro, M.:Theoretical challenges towards cutting-plane selection. Math. Program. 170(1), 237-266(2018) [104] Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.:Learning a SAT solver from single-bit supervision. arXiv:1802.03685(2018) [105] Ross, S., Gordon, G., Bagnell, D.:A reduction of imitation learning and structured prediction to no-regret online learning. In:Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 627-635. JMLR Workshop and Conference Proceedings (2011) |
[1] | Marco Antonio Figueiredo Menezes, Nelson Maculan. An Affine Scaling Algorithm for Biobjective Linear Programming [J]. Journal of the Operations Research Society of China, 2024, 12(4): 937-951. |
[2] | Roberto Montemanni, Derek H. Smith, Xiao-Chen Chou. Maximum Independent Sets and Supervised Learning [J]. Journal of the Operations Research Society of China, 2023, 11(4): 957-972. |
[3] | Tian-De Guo, Yan Liu, Cong-Ying Han. An Overview of Stochastic Quasi-Newton Methods for Large-Scale Machine Learning [J]. Journal of the Operations Research Society of China, 2023, 11(2): 245-275. |
[4] | Noelia Juarez, Pablo A. Neme, Jorge Oviedo. Marriage Market with Indifferences: A Linear Programming Approach [J]. Journal of the Operations Research Society of China, 2023, 11(1): 219-242. |
[5] | Ruo-Tian Gao, Shu-Cherng Fang, Cheng Lu, Wen-Xun Xing. A Polynomial-Time Algorithm with Tight Error Bounds for Single-Period Unit Commitment Problem [J]. Journal of the Operations Research Society of China, 2023, 11(1): 1-28. |
[6] | Long The Nguyen, Huong Thu Nguyen, Alexander Diomidovich Afanasiev, Tao Van Nguyen. Automatic Identification Fingerprint Based on Machine Learning Method [J]. Journal of the Operations Research Society of China, 2022, 10(4): 849-860. |
[7] | Cai-Hua Chen, Yu-Hang Du, Dong-Dong Ge, Lin Lei, Yin-Yu Ye. Optimization and Operations Research in Mitigation of a Pandemic [J]. Journal of the Operations Research Society of China, 2022, 10(2): 289-304. |
[8] | Ya-Guang Yang. An Interior-Point Algorithm for Linear Programming with Optimal Selection of Centering Parameter and Step Size [J]. Journal of the Operations Research Society of China, 2021, 9(3): 659-671. |
[9] | Sumit Kumar Maiti, Sankar Kumar Roy. Bi-level Programming for Stackelberg Game with Intuitionistic Fuzzy Number: a Ranking Approach [J]. Journal of the Operations Research Society of China, 2021, 9(1): 131-149. |
[10] | Zhou-Chen Lin. How Can Machine Learning and Optimization Help Each Other Better? [J]. Journal of the Operations Research Society of China, 2020, 8(2): 341-351. |
[11] |
Yu-Hong Dai, Rui Diao, Kai Fu.
Complexity Analysis and Algorithm Design of Pooling Problem
[J]. Journal of the Operations Research Society of China, 2018, 6(2): 249-266.
|
[12] | Mrinal Jana · Geetanjali Panda. Compromising Solution of Geometric Programming Problem with Bounded Parameters [J]. Journal of the Operations Research Society of China, 2017, 5(3): 377-390. |
[13] | Dong-Dong Ge · Zi-Zhuo Wang · Lai Wei ·Jia-Wei Zhang. An Improved Algorithm for Fixed-Hub Single Allocation Problems [J]. Journal of the Operations Research Society of China, 2017, 5(3): 319-332. |
[14] | Zhi-You Wu · Fu-Sheng Bai · Jing Tian. Optimization Methods for Box-Constrained Nonlinear Programming Problems Based on Linear Transformation and Lagrange Interpolating Polynomials [J]. Journal of the Operations Research Society of China, 2017, 5(2): 193-. |
[15] | Bing-Sheng He· Xiao-Ming Yuan. Alternating Direction Method of Multipliers for Linear Programming [J]. Journal of the Operations Research Society of China, 2016, 4(4): 425-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||