[1] Levy, Y., Yechiali, U.: Utilization of idle time in an M/G/1 queueing system. Manage. Sci. 22, 202–211(1975) [2] Doshi, B.: Queueing systems with vacations—a survey. Queue. Syst. 1, 29–66(1986) [3] Ke, J.C., Wu, C.H., Zhang, Z.G.: Recent developments in vacation queueing models: a short survey. Int. J. Oper. Res. 7, 3–8(2010) [4] Takagi, H.: Queueing analysis: A foundation of performance evaluation. 1, North-Holland, Amsterdam (1991) [5] Tian, N., Zhang, Z.: Vacation Queueing Models-Theory and Applications. Springer-Verlag, New York (2006) [6] Servi, L.D., Finn, S.G.: M/M/1 queues with working vacation (M/M/1/WV). Perform. Eval. 50(1), 41–52(2002) [7] Kim, J.D., Choi, D.W., Chae, K.C.: Analysis of queue-length distribution of the $ M/G/ $1 queue with working vacation. In: Hawaii International Conference on Statistics and Related Fields, pp. 1–9(2003) [8] Wu, D., Takagi, H.: M/G/1 queue with multiple working vacations. Perfom. Eval. 63, 654–681(2006) [9] Li, J., Tian, N., Zhang, Z.G., Luh, H.P.: Analysis of the M/G/1 queue with exponentially working vacations-a matrix analytic approach. Queue. Syst. 61, 139–166(2011) [10] Baba, Y.: Analysis of a GI/M/1 queue with multiple working vacations. Oper. Res. Lett. 33(2), 201–209(2005) [11] Li, J., Tian, N.: Performance analysis of a GI/M/1 queue with single working vacation. Appl. Math. Comput. 217, 4960–4971(2011) [12] Banik, A.D., Gupta, U.C., Pathak, S.S.: On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation. Appl. Math. Model. 31, 1701–1710(2007) [13] Ye, Q., Liu, L.: Performance analysis of the GI/M/1 queue with single working vacation and vacations. Methodol. Comput. Appl. Probab. 19, 685–714(2017) [14] Tian, N.S., Li, J.H., Zhang, Z.G.: Matrix analytic method and working vacation queues - a survey. Int. J. Inform. Manag. Sci. 20, 603–633(2009) [15] Li, J., Tian, N.: The M/M/1 queue with working vacations and vacation interruptions. J. Syst. Sci. Syst. Eng. 16(1), 121–127(2007) [16] Li, J., Tian, N., Ma, Z.: Performance analysis of GI/M/1 queue with working vacations and vacation interruption. Appl. Math. Model. 32, 2715–2730(2008) [17] Li, T., Wang, Z., Liu, Z.: The GI/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption. Appl. Math. Model. 37, 3724–3735(2013) [18] Zhang, M., Hou, Z.: Performance analysis of $ M/G/ $1 queue with working vacations and vacation interruption. J. Comput. Appl. Math. 234, 2977–2985(2010) [19] Baba, Y.: The M/PH/1 queue with working vacations and vacation interruption. J. Syst. Sci. Syst. Eng. 19, 496–503(2010) [20] Zhang, H., Shi, D.: The M/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption. Int. J. Inf. Manag. Sci. 20, 579–587(2009) [21] Li, T., Liu, Z., Wang, Z.: The GI/M/1 queue with start-up period and single working vacation and Bernoulli vacation interruption. Appl. Math. Comput. 218, 4401–4413(2011) [22] Gao, S., Liu, Z.: An M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Appl. Math. Model. 37, 1564–1579(2013) [23] Vijaya Laxmi, P., Jyothsna, K.: Impatient customer queue with Bernoulli schedule vacation interruption. Comput. Oper. Res. 56, 1–7(2015) [24] Bouchentouf, A.A., Yahiaoui, L.: On feedback queueing system with reneging and retention of reneged customers, multiple working vacations and Bernoulli schedule vacation interruption. Arab. J. Math. 6, 1–11(2017) [25] Neuts, M.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University, Baltimore (1981) [26] Latouche, G., Rammaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SCAM series on Applied Probability (1999) [27] Gross, D., Shortle, J.F., Thompson, J.M., Harris, C.M.: Fundamentals of Queueing Theory, 4th edn. Wiley, New York (2008) [28] Yu, M., Tang, Y., Fu, Y., Pan, L.: GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period. J. Comput. Appl. Math. 235, 2170–2184(2011) |