[1] Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008) [2] Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–228(1973) [3] Yang, J., Ma, Y., Liu, G.: Fractional $ (g, f) $-factors in graphs. Appl. Math. J. Chin. Univ. Ser. A 16, 385–390(2001) [4] Woodall, D.: The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15, 225–255(1973) [5] Zhang, L., Liu, G.: Fractional $ k $-factor of graphs. J. Syst. Sci. Math. Sci. 21(1), 88–92(2001) [6] Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Combin. Theory Ser. B 88, 195–218(2003) [7] Wang, S., Zhang, W.: Research on fractional critical covered graphs. Probl. Inform. Transm. 56(3), 270–277(2020) [8] Zhou, S.: Binding numbers and restricted fractional $ (g,f) $-factors in graphs. Discrete Appl. Math. https://doi.org/10.1016/j.dam.2020.10.017(2020) [9] Zhou, S.: Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Trans. https://doi.org/10.7151/dmgt.2364(2020) [10] Zhou, S., Sun, Z.: Binding number conditions for $ P_{\geqslant \!\!2} $-factor and $ P_{\geqslant \!\!3} $-factor uniform graphs. Discrete Math. 343(3), 111715(2020) [11] Zhou, S.: Remarks on path factors in graphs. RAIRO Oper. Res. 54(6), 1827–1834(2020) [12] Tutte, W.T.: The 1-factors of oriented graphs. Proc. Am. Math. Soc. 4, 922–931(1953) [13] Cornuéjols, G., Pulleyblank, W.R.: Perfect triangle-free 2-matchings. In: Combinatorial Optimization, II (Proceedings of Conference University of East Anglia, Norwich, 1979), Mathematical Programming Studies, vol. 13, pp. 1–7(1980) [14] Egawa, Y., Furuya, M.: Sufficient conditions for the existence of pseudo 2-factors without isolated vertices and small odd cycles. Discrete Math. 341, 2276–2284(2018) [15] Las Vergnas, M.: An extension of Tutte's 1-factor theorem. Discrete Math. 23, 241–255(1978) [16] Amahashi, A., Kano, M.: On factors with given components. Discrete Math. 42, 1–6(1983) [17] Zhou, S.: Some results about component factors in graphs. RAIRO Oper. Res. 53, 723–730(2019) [18] Berge, C., Las Vergnas, M.: On the existence of subgraphs with degree constraints. Indag. Math. (N.S.) 40, 165–176(1978) [19] Egawa, Y., Kano, M., Yan, Z.: Star-cycle factors of graphs. Discuss. Math. Graph Theory 34, 193–198(2014) [20] Kano, M., Lu, H., Yu, Q.: Component factors with large components in graphs. Appl. Math. Lett. 23, 385–389(2010) [21] Kano, M., Saito, A.: Star-factors with large components. Discrete Math. 312, 2005–2008(2012) [22] Zhang, Y., Yan, G., Kano, M.: Star-like factors with large components. J. Oper. Res. Soc. China 3, 81–88(2015) [23] Kano, M., Lu, H., Yu, Q.: Fractional factors, component factors and isolated vertex conditions in graphs. Electron. J. Combin. 26(4), No. 4.33(2019) [24] Cornuéjols, G., Hartvigsen, D.: An extension of matching theory. J. Combin. Theory Ser. B 40, 285–296(1986) [25] Gao, W., Wang, W., Chen, Y.: Tight bounds for the existence of path factors in network vulnerability parameter settings. Int. J. Intell. Syst. 36(3), 1133–1158(2021) |