[1] Rahmani, D., Ramezanian, R., Fattahi, P., Heydari, M.: A robust optimization model for multi-product two-stage capacitated production planning under uncertainty. Appl. Math. Model. 37(20–21), 8957–8971(2013) [2] Pochet, Y., Wolsey, L. A.: Production Planning by Mixed Integer Programming. Springer, New York (2006) [3] Aghezzaf, E. H., Sitompul, C., Najid, N. M.: Models for robust tactical planning in multi-stage production systems with uncertain demands. Comput. Oper. Res. 37(5), 880–889(2010) [4] Alem, D. J., Morabito, R.: Production planning in furniture settings via robust optimization. Comput. Oper. Res. 39(2), 139–150(2012) [5] Leung, S. C. H., Tsang, S. O. S., Ng, W. L., Wu, Y.: A robust optimization model for multi-site production planning problem in an uncertain environment. Eur. J. Oper. Res. 181(1), 224–238(2007) [6] Mula, J.: Mathematical programming models for supply chain production and transport planning. Eur. J. Oper. Res. 204(3), 377–390(2010) [7] Mula, J., Poler, R., García-Sabater, J. P., Lario, F. C.: Models for production planning under uncertainty: a review. Int. J. Prod. Econ. 103(1), 271–285(2006) [8] Morgenstern, O., Von Neumann, J.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1953) [9] Dentcheva, D., Ruszczyński, A.: Inverse stochastic dominance constraints and rank dependent expected utility theory. Math. Program. 108(2–3), 297–311(2006) [10] Dentcheva, D., Ruszczynski, A.: Common mathematical foundations of expected utility and dual utility theories. SIAM J. Optim. 23(1), 381–405(2013) [11] Fishburn, P. C.: Utility theory. Encyclopedia of Statistical Sciences 14(2004) [12] Berry, S., Pakes, A.: The pure characteristics demand model. Int. Econ. Rev. 48(4), 1193–1225(2007) [13] Pang, J. S., Su, C. L., Lee, Y. C.: A constructive approach to estimating pure characteristics demand models with pricing. Oper. Res. 63(3), 639–659(2015) [14] Chen, X., Sun, H., Wets, R. J. B.: Regularized mathematical programs with stochastic equilibrium constraints: estimating structural demand models. SIAM J. Optim. 25(1), 53–75(2015) [15] Sun, H., Su, C. L., Chen, X.: SAA-regularized methods for multiproduct price optimization under the pure characteristics demand model. Math. Program. 165(1), 361–389(2017) [16] Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, vol. 28. Princeton University Press, Princeton (2009) [17] Chen, X., Sun, H., Xu, H.: Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems. Math. Program. 177(1–2), 255–289(2019) [18] Ling, A., Sun, J., Xiu, N., Yang, X.: Robust two-stage stochastic linear optimization with risk aversion. Eur. J. Oper. Res. 256(1), 215–229(2017) [19] Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation. Optimization 57(3), 395–418(2008) [20] Shapiro, A.: Monte Carlo sampling methods. Handbooks Oper. Res. Manag. Sci. 10, 353–425(2003) [21] Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2014) [22] Cottle, R. W., Pang, J. S., Stone, R. E.: The Linear Complementarity Problem. SIAM, Philadelphia (1992) [23] Rockafellar, R. T., Wets, R. J. B.: Variational Analysis. Springer, New York (2009) [24] Burke, J. V., Lewis, A. S., Overton, M. L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15(3), 751–779(2005) [25] Lewis, A. S., Overton, M. L.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–2), 135–163(2013) |