[1] Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods and Applications. Kluwer, Dordrecht (1997) [2] Nguyen, T.H.P., Tuy, H.: A unified monotonic approach to generalized linear fractional programming. J. Glob. Optim. 26, 229–259(2003) [3] Gao, Y.L., Xu, C.X., Yan, Y.L.: An outcome-space finite algorithm for solving linear multiplicative programming. Appl. Math. Comput. 179(2), 494–505(2006) [4] Wang, C.F., Liu, S.Y.: A new linearization method for generalized linear multiplicative programming. Comput. Oper. Res. 38, 1008–1013(2011) [5] Shen, P., Jiao, H.: Linearization method for a class of multiplicative programming with exponent. Appl. Math. Comput. 183(1), 328–336(2006) [6] Ryoo, H.S., Sahinidis, N.V.: Global optimization of multiplicative programs. J. Glob. Optim. 26, 387–418(2003) [7] Jiao, H., Liu, S.: Global optimization algorithm for a generalized linear multiplicative programming. J. Appl. Math. Comput. 40(1–2), 551–568(2012) [8] Jiao, H., Liu, S., Yin, J., Zhao, Y.: Outcome space range reduction method for global optimization of sum of linear ratios problems. Open Math. 14, 736–746(2016) [9] Jiao, H., Liu, S.: Range division and compression algorithm for quadratically constrained sum of quadratic ratios. Comput. Appl. Math. 36(1), 225–247(2017) [10] Jiao, H., Liu, S.: A practicable branch and bound algorithm for sum of linear ratios problem. Eur. J. Oper. Res. 243(3), 723–730(2015) [11] Shen, P., Li, X.: Branch-reduction-bound algorithm for generalized geometric programming. J. Glob. Optim. 56(3), 1123–1142(2013) [12] Wang, Y.J., Liang, Z.A.: A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168, 722–737(2005) [13] Gao, Y., Xu, C., Wang, Y., Zhang, L.: A new two-level linear relaxed bound method for geometric programming problems. Appl. Math. Comput. 164(1), 117–131(2005) [14] Shen, P.: Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput. 162, 353–370(2005) [15] Shen, P., Zhang, K.: Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150, 99–114(2004) [16] Shen, P., Li, X., Jiao, H.: Accelerating method of global optimization for signomial geometric programming. J. Comput. Appl. Math. 214, 66–77(2008) [17] Jiao, H., Guo, Y., Shen, P.: Global optimization of generalized linear fractional programming with nonlinear constraints. Appl. Math. Comput. 183(2), 717–728(2006) [18] Liu, X., Gao, Y., Zhang, B., Tian, F.: A new global optimization algorithm for a class of linear fractional programming. Mathematics 7, 867(2019) [19] Zhang, B., Gao, Y., Liu, X., Huang, X.: Output-space branch-and-bound reduction algorithm for a class of linear multiplicative programs. Mathematics 8, 315(2020) [20] Shen, P., Huang, B., Wang, L.: Range division and linearization algorithm for a class of linear ratios optimization problems. J. Comput. Appl. Math. 350, 324–342(2019) [21] Shen, P., Zhu, Z., Chen, X.: A practicable contraction approach for the sum of the generalized polynomial ratios problem. Eur. J. Oper. Res. 278(1), 36–48(2019) [22] Shen, P., Wang, C.: Global optimization for sum of generalized fractional functions. J. Comput. Appl. Math. 214, 1–12(2008) [23] Jiao, H., Liu, S.: An efficient algorithm for quadratic sum-of-ratios fractional programs problem. Numer. Func. Anal. Opt. 38(11), 1426–1445(2017) [24] Gao Y., Jin S.: A global optimization algorithm for sum of linear ratios problem, J. Appl. Math. (2013), Article ID 276245, 7 pages [25] Wang, C., Shen, P.: A global optimization algorithm for linear fractional programming. Appl. Math. Comput. 204, 281–287(2008) [26] Pei, Y., Zhu, D.: Global optimization method for maximizing the sum of difference of convex functions ratios over nonconvex region. J. Appl. Math. Comput. 41(1–2), 153–169(2013) [27] Jiao, H.: A branch and bound algorithm for globally solving a class of nonconvex programming problems. Nonlinear Anal-Theor. 70, 1113–1123(2009) [28] Jiao, H., Liu, S., Zhao, Y.: Effective algorithm for solving the generalized linear multiplicative problem with generalized polynomial constraints. Appl. Math. Model. 39(23–24), 7568–7582(2015) |