[1] Rudin, L.I., Osher, S., Fatemi, E.:Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268(1992) [2] Lysaker, M., Lundervold, A., Tai, X.-C.:Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Imaging Process. 12, 1579-1590(2003) [3] Chan, R.H., Liang, H., Wei, S., Nikolova, M., Tai, X.-C.:High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Probl. Imaging 9, 55-77(2015) [4] Lysaker, M., Tai, X.-C.:Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66, 5-18(2005) [5] Bredies, K., Kunisch, K., Pock, T.:Total generalized variation. SIAM J. Imaging Sci. 3, 492-526(2010) [6] Knoll, F., Bredies, K., Pock, T., Stollberger, R.:Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65, 480-491(2011) [7] Lavoie, J.L., Osler, T.J., Tremblay, R.:Fractional derivatives and special functions. SIAM Rev. 18, 240-268(1976) [8] Podlubny, I.:Fractional Differential Equations. Academic Press, New York (1999) [9] Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B.M.V.:Matrix approach to discrete fractional calculus II:partial fractional differential equations. J. Comput. Phys. 228(8), 3137-3153(2009) [10] Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, C.:Fractional differentiation for edge detection. Signal Process. 83, 2421-2432(2002) [11] Bai, J., Feng, X.C.:Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492-2502(2007) [12] Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.:An adaptive strategy for restoration of textured images using fractional order regularization. Numer. Math. Theory Methods Appl. 6, 276-296(2013) [13] Cuesta, E., Kirane, M., Malik, S.:Image structure preserving denoising using genelized fractional time integrals. Signal Process. 92, 553-563(2012) [14] Hu, X., Li, Y.:A new variational model for image denoising based in fractional-order derivative. In:2012 International Conference on Systems and Informatics (ICSAI), pp. 1820-1824(2012) [15] Larnier, S., Mecca, R.:Fractional-order diffusion for image reconstruction. In:2012 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1057-1060(2012) [16] Pu, Y., Zhou, J., Siarry, P., Zhang, N., Liu, Y.:Fractional partial differential equation:fractional total variation and fractional steepest decent approach-based multiscale denoising model for texture image. Abstr Appl Anal. (2013). https://doi.org/10.1155/2013/483791 [17] Xu, J., Feng, X., Hao, Y.:A coupled variational model for image denoising using a duality strategy and split Bregman. Multidimens. Syst. Signal Process. 25, 83-94(2014) [18] Zhang, J., Chen, K.:A Total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, Computer Vision and Pattern Recognition (2015). arXiv:1509.04237.pdf [19] Zhang, J., Wei, Z., Xiao, L.:Adaptive fractional-order multi-scale method for image denoising. J. Math. Imaging Vis. 43, 39-49(2011) [20] Zhang, J., Wei, Z.:A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Appl. Math. Model. 35(5), 2516-2528(2011) [21] Wang,W.,Lu,P.:Anewimagedeblurringmethodbasedonfractionaldifferential.In:Audio,Language and Image Processing, pp. 497-501(2012) [22] Tian, D., Xue, D., Chen, D., Sun, S.:A fractional-order regulatory CV model for brain MR image segmentation. In:2013 Chinese Control and Decision Conference, pp. 37-40(2013) [23] Zhang, Y., Pu, Y.-F., Hu, J.-R., Zhou, J.-L.:A class of fractional-order variational image inpainting models. Appl. Math. Inf. Sci. 6(2), 299-306(2012) [24] Zhang, J., Wei, Z.:Fractional variational model and algorithm for image denoising. In:Proceedings of the Fourth International Conference on Natural Computation., vol 5, pp. 524-528. IEEE, Washington (2008) [25] Glowinski, R., Marrocco, A.:Sur L'approximation, par elements finis d'ordre un, et la resolution, par penalisationdualite, dune classe de problems de Direchlet non linaries. R. A. I. O. R29(R-2), 41-76(1975) [26] Gabay, D., Mercier, B.:A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40(1976) [27] Wu, C.L., Tai, X.C.:Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300-339(2010) [28] Wu, C.L., Zhang, J.Y., Tai, X.C.:Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5, 237-261(2010) [29] Tai, X.C., Wu, C.L.:Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In:Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings. Lecture Notes in Computer Science 5567, pp. 502-513. Springer, Heidelberg (2009) [30] Zhang, X., Burger, M., Osher, S.:A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20-46(2011) [31] Goldstein, T., Osher, S.:The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2, 323-343(2009) [32] Deng, W., Yin, W.:On the global and linear convergence of generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889-916(2016) [33] Eckstein, J., Bertsekas, D.:On the Douglas-Rackford Splitting Method and Proximal Point Algorithm for Maximal Monotone Operators, Mathematical Programming, vol. 55. North-Holland, Amsterdam (1992) [34] Guo, W., Qin, J., Yin, W.:A new detail-preserving regularity scheme. SIAM J. Imaging Sci. 7(2), 1309-1334(2014) |