[1] Cortes, C., Vapnik, V.:Support-vector networks. Mach. Learn. 20(3), 273-297(1995) [2] Deng, N., Tian, Y., Zhang, C.:Support Vector Machines:Optimization Based Theory, Algorithms, and Extensions, pp. 1-28. Chapman and Hall/CRC, London (2012) [3] Mingheng, Z., Yaobao, Z., Ganglong, H., Gang, C.:Accurate multisteps traffic flow prediction based on SVM. Math. Probl. Eng. 2013, 1-8(2013) [4] Wei, L., Wei, B., Wang, B.:Text classification using support vector machine with mixture of kernel. J. Softw. Eng. Appl. 05(12), 55-58(2012) [5] Tian, Y., Ju, X.:Nonparallel support vector machine based on one optimization problem for pattern recognition. J. Oper. Res. Soc. China 3(4), 499-519(2015) [6] Narayana, K.V., Manoj, V.V.R., Swathi, K.:Enhanced face recognition based on PCA and SVM. Int. J. Comput. Appl. 117(2), 40-42(2015) [7] Cao, L., Tay, F.E.H.:Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Netw. 14(6), 1506-1518(2003) [8] Suykens, J.A.K., Vandewalle, J.:Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293-300(1999) [9] Mangasarian, O.L., Wild, E.W.:Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Patttern Anal. Mach. Intell. 28(1), 69-74(2006) [10] Bai, Y., Shen, Y., Shen, K.:Consensus proximal support vector machine for classification problems with sparse solutions. J. Oper. Res. Soc. China 2(1), 57-74(2014) [11] Bai, Y., Zhu, Z., Yan, W.:Sparse proximal support vector machine with a specialized interior-point method. J. Oper. Res. Soc. China 3(1), 1-15(2015) [12] Jayadeva, Khemchandani, R., Chandra, S:Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905-910(2007) [13] Arun Kumar, M., Gopal, M.:Least squares twin support vector machines for pattern classification. Exp. Syst. Appl. 36(4), 7535-7543(2009) [14] Yang, Z.X., Shao, Y.H., Zhang, X.S.:Multiple birth support vector machine for multi-class classification. Neural Comput. Appl. 22(1), 153-161(2013) [15] Chen, S.G., Wu, X.J.:Multiple birth least squares support vector machine for multi-class classification. Int. J. Mach. Learn. Cybern. 8(6), 1731-1742(2017) [16] Shao, Y., Wang, Z., Chen, W., Deng, N.:Least squares twin parametric-margin support vector machine for classification. Appl. Intell. 39(3), 451-464(2013) [17] Shao, Y., Deng, N.:A novel margin-based twin support vector machine with unity norm hyperplanes. Neural Comput. Appl. 22, 1627-1635(2013) [18] Tomar, D., Agarwal, S.:Twin support vector machine:a review from 2007 to 2014. Egypt. Inform. J. 16(1), 55-69(2015) [19] Tian, Y., Qi, Z., Ju, X., Shi, Y., Liu, X.:Nonparallel support vector machines for pattern classification. IEEE Trans. Syst. Man. Cybern. 44(7), 1067-1079(2014) [20] Shao, Y., Zhang, C., Wang, X., Deng, N.:Improvements on twin support vector machines. IEEE Trans. Neural Netw. 22(6), 962-968(2011) [21] Tian, Y., Ping, Y.:Large-scale linear nonparallel support vector machine solver. Neural Netw. 50, 166-174(2014) [22] Dagher, I.:Quadratic kernel-free non-linear support vector machine. J. Glob. Optim. 41(1), 15-30(2008) [23] Luo, J., Fang, S., Deng, Z., Guo, X.:Soft quadratic surface support vector machine for binary classification. Asia Pac. J. Oper. Res. 33(6), 1-22(2016) [24] Bai, Y., Han, X., Chen, T., Yu, H.:Quadratic kernel-free least squares support vector machine for target diseases classification. J. Comb. Optim. 30(4), 850-870(2015) [25] Yan, X., Bai, Y., Fang, S.C., Luo, J.:A kernel-free quadratic surface support vector machine for semi-supervised learning. J. Oper. Res. Soc. 67(7), 1001-1011(2016) [26] Zhan, Y., Bai, Y., Zhang, W., Ying, S.:A P-ADMM for sparse quadratic kernel-free least squares semi-supervised support vector machine. Neurocomputing 306, 37-50(2018) [27] Boyd, S.P., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122(2011) |