[1] Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends® Mach. Learn. 4(2), 107-194 (2011) [2] Hazan, E.: Introduction to online convex optimization. Found. Trends® Optim. 2(3-4), 157-325 (2015) [3] Hoi, S.C.H., Sahoo, D., Lu, J., Zhao, P.: Online learning: a comprehensive survey. Neurocomputing 459, 249-289 (2021) [4] Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of the 20th International Conference on Machine Learning, pp. 928-935 (2003) [5] Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for online convex optimization. Mach. Learn. 69, 169-192 (2007) [6] Dixit, R., Bedi, A.S., Tripathi, R., Rajawat, K.: Online learning with inexact proximal online gradient descent algorithms. IEEE Trans. Signal Process. 67(5), 1338-1352 (2019) [7] Mahdavi, M., Jin, R., Yang, T.: Trading regret for efficiency: online convex optimization with long term constraints. J. Mach. Learn. Res. 13, 2503-2528 (2012) [8] Yu, H., Neely, M.J.: A low complexity algorithm with O√T regret and O(1) constraint violations for online convex optimization with long term constraints. J. Mach. Learn. Res. 21, 1-24 (2020) [9] Mannor, S., Tsitsiklis, J.N., Yu, J.Y.: Online learning with sample path constraints. J. Mach. Learn. Res. 10, 569-590 (2009) [10] Paternain, S., Ribeiro, A.: Online learning of feasible strategies in unknown environments. IEEE Trans. Automat. Control 62(6), 2807-2822 (2017) [11] Chen, T., Ling, Q., Giannakis, G.B.: An online convex optimization approach to proactive network resource allocation. IEEE Trans. Signal Process. 65(24), 6350-6364 (2017) [12] Neely, M.J., Yu, H.: Online convex optimization with time-varying constraints. arXiv:1702.04783 (2017) [13] Cao, X., Liu, K.J.R.: Online convex optimization with time-varying constraints and bandit feedback. IEEE Trans. Automat. Control 64(7), 2665-2680 (2019) [14] Zhang, Y., Dall’Anese, E., Hong, M.: Online proximal-ADMM for time-varying constrained convex optimization. IEEE Trans. Signal Inform. Process. Netw. 7, 144-155 (2021) [15] Fazlyab, M., Paternain, S., Preciado, V.M., Ribeiro, A.: Prediction-correction interior-point method for time-varying convex optimization. IEEE Trans. Automat. Control 63(7), 1973-1986 (2018) [16] Cao, X., Başar, T.: Decentralized online convex optimization based on signs of relative states. Automatica J. IFAC 129, 109676-13 (2021) [17] Yi, X., Li, X., Yang, T., Xie, L., Chai, T., Johansson, K.H.: Distributed bandit online convex optimization with time-varying coupled inequality constraints. IEEE Trans. Automat. Control 66(10), 4620-4635 (2021) [18] Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97-116 (1976) [19] Zhao, X.-Y., Sun, D., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737-1765 (2010) [20] Chatzipanagiotis, N., Dentcheva, D., Zavlanos, M.M.: An augmented Lagrangian method for distributed optimization. Math. Program. 152(1-2, Ser. A), 405-434 (2015) [21] Chatzipanagiotis, N., Zavlanos, M.M.: A distributed algorithm for convex constrained optimization under noise. IEEE Trans. Automat. Control 61(9), 2496-2511 (2016) [22] Moradian, H., Kia, S.S.: Cluster-based distributed augmented Lagrangian algorithm for a class of constrained convex optimization problems. Automatica J. IFAC 129, 109608 (2021) [23] Zhang, L., Zhang, Y., Wu, J., Xiao, X.: Solving stochastic optimization with expectation constraints efficiently by a stochastic augmented Lagrangian-type algorithm. INFORMS J. Comput. 34(6), 2989-3006 (2022) [24] Zinkevich, M., Langford, J., Smola, A.: Slow learners are fast. In: Advances in Neural Information Processing Systems, vol. 22, pp. 2331-2339 (2009) [25] Joulani, P., Gyorgy, A., Szepesvari, C.: Online learning under delayed feedback. In: Proceedings of Machine Learning Research, vol. 28, pp. 1453-1461. PMLR, Atlanta (2013) [26] Pan, W., Shi, G., Lin, Y., Wierman, A.: Online optimization with feedback delay and nonlinear switching cost. Proc. ACM Meas. Anal. Comput. Syst. 6(1), 1-34 (2022) [27] Cao, X., Zhang, J., Poor, H.V.: Constrained online convex optimization with feedback delays. IEEE Trans. Automat. Control 66(11), 5049-5064 (2021) [28] Asi, H., Duchi, J.C.: Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity. SIAM J. Optim. 29(3), 2257-2290 (2019) [29] Liakopoulos, N., Destounis, A., Paschos, G., Spyropoulos, T., Mertikopoulos, P.: Cautious regret minimization: online optimization with long-term budget constraints. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 3944-3952 (2019) [30] Bernstein, A., Dall’Anese, E., Simonetto, A.: Online primal-dual methods with measurement feedback for time-varying convex optimization. IEEE Trans. Signal Process. 67(8), 1978-1991 (2019) [31] Zhang, L., Liu, H., Xiao, X.: Regrets of proximal method of multipliers for online non-convex optimization with long term constraints. J. Glob. Optim. 85(1), 61-80 (2023) [32] Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 2.1. http://cvxr.com/cvx (2014) [33] Yi, X., Li, X., Xie, L., Johansson, K.H.: Distributed online convex optimization with time-varying coupled inequality constraints. IEEE Trans. Signal Process. 68, 731-746 (2020) [34] Cao, X., Başar, T.: Decentralized online convex optimization with event-triggered communications. IEEE Trans. Signal Process. 69, 284-299 (2021) [35] Wang, C., Xu, S.: Distributed online constrained optimization with feedback delays. IEEE Trans. Neural Netw. Learn Syst. (2023). Online first [36] Liu, P., Lu, K., Xiao, F., Wei, B., Zheng, Y.: Online distributed learning for aggregative games with feedback delays. IEEE Trans. Automat. Control (2023). https://doi.org/10.1109/TAC.2023.3237781 |