Journal of the Operations Research Society of China ›› 2025, Vol. 13 ›› Issue (2): 327-363.doi: 10.1007/s40305-023-00532-x
Peng-Cheng Xie1,2, Ya-Xiang Yuan1,2
Received:
2023-01-09
Revised:
2023-11-18
Online:
2025-06-30
Published:
2025-07-07
Contact:
Peng-Cheng Xie
E-mail:xpc@lsec.cc.ac.cn
Supported by:
CLC Number:
Peng-Cheng Xie, Ya-Xiang Yuan. Derivative-Free Optimization with Transformed Objective Functions and the Algorithm Based on the Least Frobenius Norm Updating Quadratic Model[J]. Journal of the Operations Research Society of China, 2025, 13(2): 327-363.
[1] Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009) [2] Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer, Berlin (2017) [3] Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 17(3), 642-664 (2006) [4] Aly, A., Guadagni, G., Dugan, J.B.: Derivative-free optimization of neural networks using local search. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference, pp. 293-299. IEEE, Piscataway (2019) [5] Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002) [6] Levina, T., Levin, Y., McGill, J., Nediak, M.: Dynamic pricing with online learning and strategic consumers: an application of the aggregating algorithm. Oper. Res. 57(2), 327-341 (2009) [7] Li, S., Xie, P., Zhou, Z., Wang, Z., Li, Z., Liang, X., Qu, B.: Simulation of interaction of folded waveguide space traveling wave tubes with derivative-free mixedinteger based NEWUOA algorithm. In: 2021 7th International Conference on Computer and Communications, pp. 1215-1219. IEEE, Piscataway (2021) [8] Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8(2), 212-229 (1961) [9] Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308-313 (1965) [10] Tseng, P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10, 269-288 (1999) [11] Kolda, T., Lewis, R., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385-482 (2003) [12] Audet, C., Le Digabel, S., Tribes, C.: NOMAD user guide. Technical report, Les Cahiers du GERAD (2009) [13] Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175-184 (1960) [14] Swann, W.H.: Direct search methods. In: Murray, W. (ed.) Numerical Methods for Unconstrained Optimization, pp. 13-28. Academic Press, London (1972) [15] Smith, C.S.: The automatic computation of maximum likelihood estimates. Technical report, Scientific Department, National Coal Board (1962) [16] Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155-162 (1964) [17] Stewart, G., III.: A modification of Davidon’s minimization method to accept difference approximations of derivatives. J. ACM 14(1), 72-83 (1967) [18] Gill, P.E., Murray, W.: Quasi-Newton methods for unconstrained optimization. IMA J. Appl. Math. 9(1), 91-108 (1972) [19] Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Computing forward-difference intervals for numerical optimization. SIAM J. Sci. Stat. Comput. 4(2), 310-321 (1983) [20] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput. Math. 17(2), 527-566 (2017) [21] Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero-order convex optimization: the power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788-2806 (2015) [22] Scheinberg, K.: Finite difference gradient approximation: to randomize or not? INFORMS J. Comput. 34(5), 2384-2388 (2022) [23] Zhigljavsky, A.A.: Theory of Global Random Search. Springer, Berlin (2012) [24] Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of gradient approximations in derivative-free optimization. Found. Comput. Math. 22(2), 507-560 (2022) [25] Winfield, D.: Function and Functional Optimization by Interpolation in Data Tables. PhD thesis, Harvard University, Cambridge (1969) [26] Powell, M.J.D.: On trust region methods for unconstrained minimization without derivatives. Math. Program. 97, 605-623 (2003) [27] Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Program. 100, 183-215 (2004) [28] Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Pillo, G., Roma, M. (eds.) Large-scale Nonlinear Optimization, pp. 255-297. Springer, Boston (2006) [29] Conn, A., Scheinberg, K., Vicente, L.N.: Geometry of sample sets in derivative free optimization. Part ii: polynomial regression and underdetermined interpolation. IMA J. Numer. Anal. 28, 721-748 (2008) [30] Conn, A., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region algorithms to first- and second-order critical points. SIAM J. Optim. 20, 387-415 (2009) [31] Xie, P., Yuan, Y.-X.: Least [32] Xie, P., Yuan, Y.-X.: A new two-dimensional model-based subspace method for large-scale unconstrained derivative-free optimization: 2D-MoSub. arXiv:2309.14855 (2023) [33] Xie, P.: Sufficient conditions for distance reduction between the minimizers of non-convex quadratic functions in the trust region. arXiv:2310.08603 (2023) [34] Björkman, M., Holmström, K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1, 373-397 (2000) [35] Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197-3219 (2008) [36] Xie, P., Yuan, Y.-X.: A derivative-free optimization algorithm combining line-search and trust-region techniques. Chin. Ann. Math. Ser. B 44(5), 719-734 (2023) [37] Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Convergence of trust-region methods based on probabilistic models. SIAM J. Optim. 24(3), 1238-1264 (2014) [38] Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Complexity and global rates of trust-region methods based on probabilistic models. IMA J. Numer. Anal. 38(3), 1579-1597 (2018) [39] Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Springer, Dordrecht (1987) [40] Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, vol. 1, pp. 525-532. Morgan Kaufmann Publishers, Burlington (1999) [41] Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic descent. SIAM J. Optim. 25(3), 1515-1541 (2015) [42] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341-2368 (2013) [43] Larson, J., Wild, S.M.: A batch, derivative-free algorithm for finding multiple local minima. Optim. Eng. 17(1), 205-228 (2016) [44] Zhang, H., Conn, A.R., Scheinberg, K.: A derivative-free algorithm for least-squares minimization. SIAM J. Optim. 20(6), 3555-3576 (2010) [45] Cartis, C., Roberts, L.: A derivative-free Gauss-Newton method. Math. Program. Comput. 11(4), 631-674 (2019) [46] Xie, P.: A derivative-free trust-region method for optimization on the ellipsoid. J. Phys. Conf. Ser. 2620(1), 012007 (2023) [47] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numer. 28, 287-404 (2019) [48] Zhang, Z.: Derivative-free optimization. In: Yuan, Y.-X. (ed.) China Discipline Development Strategy: Mathematical Optimization, pp. 84-92. Science Press, Beijing (2021). (in Chinese) [49] Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247-1293 (2013) [50] Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1-18 (2003) [51] Scheinberg, K.: Manual for Fortran software package DFO version 2.0. Technical report (2003) [52] Kelley, C.T.: Users guide for IMFIL version 1.0. Technical report (2011) [53] Powell, M.J.D.: A tolerant algorithm for linearly constrained optimization calculations. Math. Program. 45, 547-566 (1989) [54] Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51-67. Springer, Dordrecht (1994) [55] Powell, M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program. Ser. B 92, 555-582 (2002) [56] Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report, University of Cambridge (2009) [57] Powell, M.J.D.: On fast trust region methods for quadratic models with linear constraints. Math. Program. Comput. 7(3), 237-267 (2015) [58] Cartis, C., Fiala, J., Marteau, B., Roberts, L.: Improving the flexibility and robustness of model-based derivative-free optimization solvers. ACM Trans. Math. 45(3), 1-41 (2019) [59] Cartis, C., Roberts, L.: Scalable subspace methods for derivative-free nonlinear least-squares optimization. Math. Program. 199(1-2), 461-524 (2023) [60] Ragonneau, T.M., Zhang, Z.: PDFO: a cross-platform package for Powell’s derivative-free optimization solvers. arXiv:2302.13246 (2023) [61] Ragonneau, T.M.: Model-based derivative-free optimization methods and software. PhD thesis, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong (2022) [62] Xie, P.: NEWUOA-Matlab-Version-2.0 (2022) [63] Xie, P.: BOBYQA-Matlab-Version-1.0 (2023) [64] Zhang, Z.: PRIMA: reference implementation for Powell’s methods with modernization and amelioration. http://www.libprima.net, https://doi.org/10.5281/zenodo.8052654(2023) [65] Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 202-210. ACM, New York (2003) [66] Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology—CRYPTO 2004, pp. 528-544. Springer, Berlin (2004) [67] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography: Third Theory of Cryptography Conference, pp. 265-284. Springer, Berlin (2006) [68] Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 75-84. ACM, New York [69] Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793-826 (2011) [70] McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science. IEEE, Piscataway (2007) [71] Wang, Y., Hale, M., Egerstedt, M., Dullerud, G.E.: Differentially private objective functions in distributed cloud-based optimization. In: 2016 IEEE 55th Conference on Decision and Control, pp. 3688-3694. IEEE, Piscataway (2016) [72] Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud computing: ciphertext-policy attribute-based signcryption. Future Gener. Comput. Syst. 52, 67-76 (2015) [73] Kusner, M., Gardner, J., Garnett, R., Weinberger, K.: Differentially private Bayesian optimization. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 918-927. PMLR, Lille, France (2015) [74] Grapiglia, G.N., Yuan, J., Yuan, Y.-x: A derivative-free trust-region algorithm for composite nonsmooth optimization. Comput. Appl. Math. 35(2), 475-499 (2016) [75] Deng, G., Ferris, M.C.: Adaptation of the UOBYQA algorithm for noisy functions. In: Proceedings of the 2006 Winter Simulation Conference, pp. 312-319. IEEE, Piscataway (2006) [76] Jamieson, K.G., Nowak, R., Recht, B.: Query complexity of derivative-free optimization. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates Inc., New York (2012) [77] Conn, A.R., Scheinberg, K., Toint, Ph. L.: On the convergence of derivative-free methods for unconstrained optimization. In: Iserles, A., Buhmann, M. (eds.) Approximation Theory and Optimization: Tributes to M. J. D. Powell, pp. 83-108. Cambridge University Press, Cambridge (1997) [78] Conn, A.R., Scheinberg, K., Toint, Ph.L.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79(1), 397-414 (1997) [79] Conn, A.R., Scheinberg, K., Toint, Ph. L.: A derivative free optimization algorithm in practice. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 4718. AIAA, Reston (1998) [80] Powell, M.J.D.: On updating the inverse of a KKT matrix. In: Yuan, Y.-X. (ed.) Numerical Linear Algebra and Optimization, pp. 56-78. Science Press, Beijing (2004) [81] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2006) [82] Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. on Optim. 20(1), 172-191 (2009) [83] Conn, A.R., Gould, N., Lescrenier, M., Toint, Ph.L.: Performance of a multifrontal scheme for partially separable optimization. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 79-96. Springer, Dordrecht (1994) [84] Toint, Ph.L.: Some numerical results using a sparse matrix updating formula in unconstrained optimization. Math. Comput. 32(143), 839-851 (1978) [85] Li, Y.J., Li, D.H.: Truncated regularized Newton method for convex minimizations. Comput. Optim. Appl. 43, 119-131 (2009) [86] Lukšan, L., Matonoha, C., Vlcek, J.: Modified CUTE problems for sparse unconstrained optimization. Technical report, Institute of Computer Science AS ČR (2010) [87] Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147-161 (2008) [88] Li, G.: The secant/finite difference algorithm for solving sparse nonlinear systems of equations. SIAM J. Numer. Anal. 25, 1181-1196 (1988) [89] Gould, N., Orban, D., Toint, Ph. L.: General CUTEr documentation. Technical report (2001) [90] Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17-41 (1981) [91] Zhang, Z.: The Research on Derivative-free Optimization Methods. PhD thesis, Graduate School of the Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing (2012) [92] Wilson, J.D., Wintucky, E.G., Vaden, K.R., Force, D.A., Krainsky, I.L., Simons, R.N., Robbins, N.R., Menninger, W.L., Dibb, D.R., Lewis, D.E.: Advances in space traveling-wave tubes for NASA missions. Proc. IEEE 95(10), 1958-1967 (2007) [93] Levush, B.: The design and manufacture of vacuum electronic amplifiers: progress and challenges. In: 2019 International Vacuum Electronics Conference (IVEC), pp. 1-5. IEEE, Piscataway (2019) |
[1] | Yin Chen, Chang-Jun Yu, Xi Zhu. A Switching Time Optimization Strategy for Optimal Control Problems [J]. Journal of the Operations Research Society of China, 2025, 13(2): 393-414. |
[2] | Lei Wang, Cui Liu, Hong-Wei Gao, Chong Lin. Irrational-Behavior-Proof Conditions for Stochastic Games over Event Trees [J]. Journal of the Operations Research Society of China, 2024, 12(1): 243-263. |
[3] | Yuji Matsuo, Tatsuo Oyama. Forecasting Daily Electric Load by Applying Artificial Neural Network with Fourier Transformation and Principal Component Analysis Technique [J]. Journal of the Operations Research Society of China, 2020, 8(4): 655-667. |
[4] | Ning Zhang, Chang-Jun Yu, Fu-Sheng Xie. The Time-Scaling Transformation Technique for Optimal Control Problems with Time-Varying Time-Delay Switched Systems [J]. Journal of the Operations Research Society of China, 2020, 8(4): 581-600. |
[5] | Ricardo Biloti, Jo?o Daniel Palma Ramos,Jin-Yun Yuan. Spectral Properties and Optimality for Elementary Matrices [J]. Journal of the Operations Research Society of China, 2018, 6(3): 467-472. |
[6] | Morteza Kimiaei, Susan Ghaderi. A New Restarting Adaptive Trust-Region Method for Unconstrained Optimization [J]. Journal of the Operations Research Society of China, 2017, 5(4): 487-507. |
[7] | Zhi-You Wu · Fu-Sheng Bai · Jing Tian. Optimization Methods for Box-Constrained Nonlinear Programming Problems Based on Linear Transformation and Lagrange Interpolating Polynomials [J]. Journal of the Operations Research Society of China, 2017, 5(2): 193-. |
[8] | Yong Xia. On Local Convexity of Quadratic Transformations [J]. Journal of the Operations Research Society of China, 2014, 2(3): 341-350. |
[9] | Geovani Nunes Grapiglia · Jin-Yun Yuan · Ya-Xiang Yuan. A Subspace Version of the Powell–Yuan Trust-Region Algorithm for Equality Constrained Optimization [J]. Journal of the Operations Research Society of China, 2013, 1(4): 425-452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||