[1] Luc, D.T.: Lecture Notes in Economics and Mathematical System. Theory of Vector Optimization. Springer, Berlin (1989) [2] Sawaragi, Y., Makayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, New York (1985) [3] Lucchetti, R.E., Miglierina, E.: Stability for convex vector optimization problems. Optimization 53, 517–528(2004) [4] Huang, X.X.: Stability in vector-valued and set-valued optimization. Math. Methods Oper. Res. 52, 185–193(2000) [5] Huang, X.X., Yang, X.Q.: On characterizations of proper efficiency for nonconvex multiobjective optimization. J. Global Optim. 23, 213–231(2002) [6] Lalitha, C., Chatterjee, P.: Stability and scalarization of weak efficient, efficient and henig proper efficient sets using generalized quasiconvexities. J. Optim. Theory Appl. 155, 941–961(2012) [7] Anh, L.Q., Hung, N.V.: On the stability of solution mappings parametric generalized vector quasivariational inequality problems of the Minty type. Filomat 31, 747–757(2017) [8] Anh, L.Q., Hung, N.V.: Stability of solution mappings for parametric bilevel vector equilibrium problems. Comput. Appl. Math. 37, 1537–1549(2018) [9] Hung, N.V., Hai, N.M.: Stability of approximating solutions to parametric bilevel vector equilibrium problems and applications. Comput. Appl. Math. 38, 57(2019). https://doi.org/10.1007/s40314-019-0823-7 [10] Hung, N.V.: On the stability of the solution mapping for parametric traffic network problems. Indagat. Math. 29, 885–894(2018) [11] Cheng, Y.H., Zhu, D.L.: Global stability for the weak vector variational inequality. J. Global Optim. 32, 543–550(2005) [12] Gong, X.H.: Continuity of the solution set to parametric weak vector equilibrium problems. J. Optim. Theory Appl. 139, 35–46(2008) [13] Gong, X.H., Yao, J.C.: Lower semicontinuity of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 197–205(2008) [14] Chen, C.R., Li, S.J.: On the solution continuity of parametric generalized systems. Pac. J. Optim. 6, 141–151(2010) [15] Han, Y., Gong, X.H.: Semicontinuity of solution mappings to parametric generalized vector equilibrium problems. Numer. Func. Anal. Opt. 37, 1420–1437(2016) [16] Han, Y., Huang, N.J.: Stability of efficient solutions to parametric generalized vector equilibrium problems. Sci. Sin. Math. 47, 397–408(2017). (in Chinese) [17] Han, Y., Huang, N.J.: Some characterizations of the approximate solutions to generalized vector equilibrium problems. J. Ind. Manag. Optim. 12, 1135–1151(2016) [18] Wang, Q.L., Li, X.B., Zeng, J.: Semicontinuity of approximate solution mappings for parametric generalized weak vector equilibrium problems. J. Nonlinear Sci. Appl. 10, 2678–2688(2017) [19] Sach, P.H., Tuan, L.A.: New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems. J. Optim. Theory Appl. 157, 347–364(2013) [20] Anh, L.Q., Bantaojai, T., Hung, N.V., Tam, V.M., Wangkeeree, R.: Painlevé–Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems. Comput. Appl. Math. 37, 3832–3845 (2018) [21] Anh, L.Q., Hung, N.V.: Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems. J. Ind. Manag. Optim. 14, 65–79(2018) [22] Hung, N.V.: On the lower semicontinuity of the solution sets for parametric generalized vector mixed quasivariational inequality problems. Bull. Korean Math. Soc. 52, 1777–1795(2015) [23] Hung, N.V.: Stability of a solution set for parametric generalized vector mixed quasivariational inequality problem. J. Inequal. Appl. 276, 1–14(2013) [24] Han, Y., Gong, X.H.: Continuity of the efficient solution mapping for vector optimization problem. Optimization 65, 1337–1347(2016) [25] Xu, Y.D., Li, S.J.: On the solution continuity of parametric set optimization problems. Math. Methods Oper. Res. 84, 223–237(2016) [26] Khoshkhabar-amiranloo, S.: Stability of minimal solutions to parametric set optimization problems. Appl. Anal. 97, 1–13(2018) [27] Guu, S.M., Huang, N.J., Li, J.: Scalarization approaches for set-valued vector optimization problem and vector variational inequalities. J. Math. Anal. Appl. 356, 564–576(2009) [28] Benoist, J., Popovici, N.: Characterizations of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57, 427–435(2003) [29] Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984) [30] Karaman, S., Soyertem, M., Güvenç, I.A., Tozkan, D., Küçük, M., Küçük, Y.: Partail order relations on family of sets and scalarizations for set optimization. Positivity 22, 783–802(2018) |