Journal of the Operations Research Society of China ›› 2022, Vol. 10 ›› Issue (2): 241-287.doi: 10.1007/s40305-021-00347-8
Previous Articles Next Articles
Sheng-Long Hu
Received:
2020-08-02
Revised:
2020-11-06
Online:
2022-06-30
Published:
2022-06-13
Contact:
Sheng-Long Hu
E-mail:shenglonghu@hdu.edu.cn
Supported by:
CLC Number:
Sheng-Long Hu. Certifying the Global Optimality of Quartic Minimization over the Sphere[J]. Journal of the Operations Research Society of China, 2022, 10(2): 241-287.
[1] Comon, P., Golub, G., Lim, L.-H., Mourrain, B.:Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254-1279(2008) [2] Qi, L.:Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324(2005) [3] Bollobás, B.:Modern Graph Theory. GTM Vol. 184, Springer, Berlin (1998) [4] Motzkin, T.S., Straus, E.G.:Maxima for graphs and a new proof of a theorem of Túran. Can. J. Math. 17, 533-540(1965) [5] Garey, M.R., Johnson, D.S.:Computers and Intractability:A Guide to the Theory of NPCompleteness. W.H. Freeman & Company, Publishers, San Francisco (1979) [6] Nesterov, Y.:Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Papers, 2003/71, https://ideas.repec.org/p/cor/louvco/2003071.html [7] Hu, S., Sun, D., Toh, K.-C.:Best nonnegative rank-one approximations of tensors. SIAM J. Matrix Anal. Appl. 40, 1527-1554(2019) [8] Marshall, M.:Optimization of polynomial functions. Can. Math. Bull. 46, 575-587(2003) [9] Lombardi, H., Perrucci, D., Roy, M.-F.:An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert's 17th Problem. Memoirs of the American Mathematical Society, Vol. 263, No. 1277(2020) [10] Golub, G.H., Van Loan, C.F.:Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore, MD (2013) [11] Bertsekas, D.P.:Nonlinear Programming, 2nd edn. Athena Scientific, Belmont, USA (1999) [12] Li, Y., Hu, S., Wang, J., Huang, Z.H.:An introduction to the computational complexity of matrix multiplication. J. Oper. Res. Soc. China 8, 29-43(2020) [13] Hartshorne, R.:Algebraic Geometry. Graduate Texts in Mathematics, Vol. 52. Springer, New York (1977) [14] Shafarevich, I.R.:Basic Algebraic Geometry, Vol I and Vol II. Springer, New York (1977) [15] Griffiths, P., Harris, J.:Priniciples of Algebraic Geometry. Wiley (1978) [16] Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.:Discriminants. Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994) [17] Hu, S., Huang, Z.H., Ling, C., Qi, L.:On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508-531(2013) [18] Eisenbud, D.:Commutative Algebra with a View Toward Algebraic Geometry. Graduate Tests in Mathematics, Vol. 150, Springer, New York (2004) [19] Cayley, A.:On the theory of linear transformations. Cambridge Math. J. 4, 1-16(1845) [20] Hu, S., Qi, L.:The E-eigenvectors of tensors. Linear Multilinear A. 62, 1388-1402(2014) [21] Chow, W.-L.:On compact complex analytic varieties. Am. J. Math. 71, 893-914(1949) [22] Okonek, C., Schneider, M., Spindler, H.:Vector Bundles on Complex Projective Spaces. Progress in Mathematics, Vol. 3, Birkhäuser, Boston (1980) [23] Fornaess, J.E., Sibony, N.:Complex dynamics in higher dimension. I, Astérisque 222, 201-231(1994) [24] Cartwright, D., Sturmfels, B.:The number of eigenvalues of a tensor. Linear Algebra Appl. 438, 942-952(2013) [25] Friedland, S., Ottaviani, G.:The number of singular vector tuples and uniqueness of best rank-one approximation of tensors. Found. Comput. Math. 14, 1209-1242(2014) [26] Oeding, L., Ottaviani, G.:Eigenvectors of tensors and algorithms for Waring decomposition. J. Symbolic Comput. 54, 9-35(2013) [27] Abo, H., Seigal, A., Sturmfels, B.:Eigenconfigurations of tensors, in Algebraic and Geometric Methods in Discrete Mathematics, Contemp. Math., 685, American Mathematical Society, Providence, RI, pp. 1-25(2017) [28] Ni, G., Qi, L., Wang, F., Wang, Y.:The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329, 1218-1229(2007) [29] Graf von Bothmer, H.-C., Ranestad, K.:A general formula for the algebraic degree in semidefinite programming. Bull. Lond. Math. Soc. 41, 193-197(2009) [30] Nie, J., Ranestad, K.:Algebraic degree of polynomial optimization. SIAM J. Optim. 20, 485-502(2009) [31] Nie, J., Ranestad, K., Sturmfels, B.:The algebraic degree of semidefinite programming. Math. Program. 122, 379-405(2010) [32] Kozhasov, K.:On fully real eigenconfigurations of tensors. SIAM J. Appl. Algebra Geometry 2, 339-347(2018) [33] Breiding, P.:How many eigenvalues of a random symmetric tensor are real. Trans. AMS 372, 7857-7887(2019) [34] Draisma, J., Horobet, E.:The average number of critical rank-one approximations to a tensor. Linear & Multilinear Algebra 64, 2498-2518(2016) [35] Breiding, P.:The expected number of eigenvalues of a real Gaussian tensor. SIAM J. Appl. Algebra Geom. 1, 254-271(2017) [36] Bott, R., Tu, L.W.:Differential Forms in Algebraic Topology. Springer (1982) [37] do Carmo, M.P.:Riemannian Geometry. Springer, Berlin (1992) [38] Hu, S., Li, G.:Convergence rate analysis for the higher order power method in best rank one approximations of tensors. Numer. Math. 140, 993-1031(2018) [39] Hu, S.:Nondegeneracy of eigenvectors and singular vector tuples of tensors. arXiv:2104.05900(2021) [40] Hu, S., Ye, K.:Linear convergence of an alternating polar decomposition method for low rank orthogonal tensor approximations. arXiv:1912.04085(2019) [41] Schmüdgen, K.:The K-moment problem for compact semi-algebraic sets. Mathematische Annalen 289, 203-206(1991) [42] Bhatia, R.:Matrix Analysis. Springer, New York (1997) [43] Stewart, G.W., Sun, J.-G.:Matrix Perturbation Theory. Academic Press, New York (1990) [44] Wilkinson, J.H.:The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965) [45] Lewis, A.S.:The convex analysis of unitarily invariant matrix functions. Arch. Math. 2, 173-183(1995) [46] Lancaster, P.:On eigenvalues of matrices dependent on a parameter. Numerische Mathematik 6, 377-387(1964) [47] Sun, J.-G.:Eigenvalues and eigenvectors of a matrix dependent on several parameters. J. Comput. Math. 3, 351-364(1985) [48] Torki, M.:Second-order directional derivatives of all eigenvalues of a symmetric matrix. Nonlinear Anal. 46, 1133-1150(2001) [49] Watson, G.A.:Characterization of the subdifferent of some matrix norms. Linear Algebra Appl. 170, 33-45(1988) [50] Ding, C., Sun, D.F., Sun, J., Toh, K.C.:Spectral operators of matrices. Math. Program. 168, 509-531(2018) [51] Ding, C., Sun, D.F., Sun, J., Toh, K.C.:Spectral operators of matrices:semismoothness and characterizations of the generalized Jacobian. SIAM J. Optim. 30, 630-659(2020) [52] Sun, D.F., Sun, J.:Semismooth matrix valued functions. Math. Oper. Res. 27, 150-169(2002) [53] Zhao, X.Y., Sun, D.F., Toh, K.-C.:A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737-1765(2010) [54] Bonnans, J.F., Shapiro, A.:Perturbation Analysis of Optimization Problems. Springer, New York (2000) [55] Cox, D., Little, J., Ó Shea, D.:Ideals, Varieties, and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2006) [56] Cox, D., Little, J., Ó Shea, D.:Using Algebraic Geometry. Springer, New York (1998) [57] Sturmfels, B.:Solving Systems of Polynomial Equations. American Mathematical Society, Providence (2002) [58] Macaulay, F.:Some formulae in elimination. Proc. London Math. Soc. 33, 3-27(1902) [59] Sylvester, J.J.:On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of sturm's functions, and that of the greatest algebraical common measure. Philosophical Transactions 143, 407-548(1853) [60] Qi, L.:Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363-1377(2007) [61] Qi, L., Luo, Z.:Tensor Analysis:spectral theory and special tensors. SIAM (2017) [62] Hu, S., Qi, L.:E-characteristic polynomial of a tensor of dimension two. Appl. Math. Lett. 26, 225-231(2013) [63] Bochnak, J., Coste, M., Roy, M.-F.:Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 36, Springer, Berlin (1998) [64] Marshall, M.:Positive Polynomials and Sums of Squares. Mathematical Surveys and Monographs, Vol. 146, AMS (2008) [65] Prestel, A., Delzell, C.N.:Positive Polynomials-From Hilberts 17th Problem to Real Algebra. Springer, Berlin (2001) [66] Hilbert,D.:Überdie Darstellungdefiniter Formenals Summevon Formenquadraten.Mathematische Annalen 32, 342-350(1888) [67] Reznick, B.:Some concrete aspects of Hilberts 17th problem, in Real Algebraic Geometry and Ordered Structures, C.N. Delzell and J.J. Madden (eds.), Contemporary Mathematics, 253:251-272(2000) [68] Eisenbud, D., Green, M., Harris, J.:Cayley-Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295-324(1996) [69] Blekherman, G.:Nonnegative polynomials and sums of squares. J. Am. Math. Soc. 25, 617-635(2012) [70] Choi, M.-D., Lam, T.-Y.:Extremal positive semidefinite forms. Math. Ann. 231, 1-18(1977) [71] Artin, E.:Über die Zerlegung definiter Funnktionen in Quadrate. Hamb. Abh. 5, 100-115(1927) [72] Krivine, J.L.:Anneaux préordonn'es. J. Analyse Math. 12, 307-326(1964) [73] Stengle, G.:A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87-97(1974) [74] Schweighofer, M.:On the complexity of Schmüdgen's Positivstellensatz. J. Complexity 20, 529-543(2004) [75] Putinar, M.:Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969-984(1993) [76] Schweighofer, M.:Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805-825(2005) [77] de Klerk, E., Laurent, M., Parrilo, P.:On the equivalence of algebraic approaches to the minimization offormsonthesimplex,inPositivePolynomialsinControl,D.HenrionandA.Garulli(eds.),Lecture Notes on Control and Information Sciences 312:pp. 121-133, Springer, Berlin (2005) [78] Nie, J., Schweighofer, M.:On the complexity of Putinar's Positivstellensatz. J. Complexity 23(1), 135-150(2007) [79] Reznick, B.:Uniform denominators in Hilbert's seventeenth problem. Math. Z. 220, 75-97(1995) [80] Powers, V., Reznick, B.:A new bound for Pólya's theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebra 164, 221-229(2001) [81] Handelman,D.:Representingpolynomialsbypositivelinearfunctionsoncompactconvexpolyhedra. Pac. J. Math. 132(1), 35-62(1988) [82] Krivine, J.L.:Quelques propriétés des préordres dans les anneaux commutatifs unitaires. C.R. Académie des Sciences de Paris 258, 3417-3418(1964) [83] Blekherman, G.:There are significantly more nonnegative polynomials than sums of squares. Isreal J. Math. 153, 355-380(2006) [84] Wolkowicz, H., Saigal, R., Vandenberghe, L.:Handbook of Semidefinite Programming:Theory, Algorithms and Applications. Kluwer Academic Publishers, Boston (2000) [85] Nestrov, Y., Nemirovski, A.:Interior Point Polynomial Time Methods in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia (1994) [86] Sturm,J.F.:SeDuMi1.02:AMatlabtoolboxforoptimizationoversymmetriccones.Optim.Methods Softw., 11& 12:625-653(1999) [87] Fujisawa, K., Futakata, Y., Kojima, M., Matsuyama, S., Nakamura, S., Nakata, K., Yamashita, M.:SDPA-M (semidefinite programming algorithm in Matlab), http://homepage.mac.com/klabtitech/sdpa-homepage/download.html [88] Toh, K.C., Todd, M.J., Tutuncu, R.H.:SDPT3:A Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545-581(1999) [89] Yang, L.Q., Sun, D.F., Toh, K.-C.:SDPNAL+:a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7, 331-366(2015) [90] Shor, N.Z.:Quadratic optimization problems. Soviet J. Comput. Syst. Sci. 25, 1-11(1987) [91] Shor, N.Z.:Class of global minimum bounds of polynomial functions. Cybernetics, 23(6):731-734. Russian orig.:Kibernetika, 6:9-11(1987) [92] Shor, N.Z.:An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika 5, 102-106(1987) [93] Shor, N.Z.:Nondifferentiable Optimization and Polynomial Problems. Kluwer, Dordrecht (1998) [94] Nesterov, Y.:Squared functional systems and optimization problems, in High Performance Optimization, J. B. G. Frenk, C. Roos, T. Terlaky, and S. Zhang, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 405-440(2000) [95] Nesterov, Y.:Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9, 141-160(1998) [96] Parrilo, P.A.:Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD Thesis, Calif. Inst. Tech, Pasadena (2000) [97] Parrilo, P.A.:Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293-320(2003) [98] Parrilo, P.A., Sturmfels, B.:Minimizing polynomial functions, in Algorithmic and Quantitative Real Algebraic geometry, S. Basu and L. Gonzáles-Vega, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 60, pp. 83-99(2003) [99] Lasserre, J.B.:Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796-817(2001) [100] Laurent, M.:Sums of squares, moment matrices and optimization over polynomials, in Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., 149, M. Putinar and S. Sullivant, eds., pp. 157-270, Springer, New York (2009) [101] Ben-Tal, A., Nemirovskii, A.:Lectures on Modern Convex Optimization:Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001) [102] de Klerk, E., Pasechnik, D.V.:Approximating the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875-892(2002) [103] Nie, J.:Sums of squares methods for minimizing polynomial forms over spheres and hypersurfaces. Front. Math. China 7, 321-346(2012) [104] Nie, J., Wang, L.:Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155-1179(2014) [105] Akhiezer, N.I.:The Classical Moment Problem. Hafner, New York (1965) [106] Curto, R.E., Fialkow, L.A.:Recursiveness, positivity, and truncated moment problems. Houston J. Math. 17, 603-635(1991) [107] Curto, R.E., Fialkow, L.A.:Solution of the Truncated Complex Moment Problem for Flat Data. Memoirs of the American Mathematical Society 119(568), (1996) [108] Curto, R.E., Fialkow, L.A.:Flat Extensions of Positive Moment Matrices:recursively generated relations. Memoirs of the American Mathematical Society 136(648), (1998) [109] Tchakaloff, V.:Formules de cubature mécanique à coefficients non négatifs. Bull. Sci. Math. 81, 123-134(1957) [110] Bayer, C., Teichmann, J.:The proof of Tchakaloff's theorem. Proc. Am. Math. Soc. 134, 3035-3040(2006) [111] Laurent, M., Mourrain, B.:A generalized flat extension theorem for moment matrices. Archiv der Mathematik 93(1), 87-98(2009) [112] Nie, J.:The A-truncated K-moment problem. Found. Comput. Math. 14, 1243-1276(2014) [113] Nie, J.:Certifying convergence of Lasserre's hierarchy via flat truncation. Math. Program. 142, 485-510(2013) [114] Laurent, M.:Semidefinite representations for finite varieties. Math. Program. 109, 1-26(2007) [115] Nie, J.:Optimality conditions and finite convergence of Lasserre's hierarchy. Math. Program. 146, 97-121(2014) [116] Nie, J., Demmel, J., Sturmfels, B.:Minimizing polynomials via sums of squares over the gradient ideal. Math. Program. 106, 587-606(2006) [117] Lasserre, J.B., Laurent, M., Rostalski, P.:Semidefinite characterization and computation of real radical ideals. Found. Comput. Math. 8, 607-647(2008) [118] Henrion, D., Lasserre, J.-B.:Detecting global optimality and extracting solutions in GloptiPoly, in Positive Polynomials in Control, D. Henrion and A. Garulli (eds.), Lecture Notes on Control and Information Sciences, 312:pp. 293-310, Springer, Berlin (2005) [119] Henrion, D., Lasserre, J.-B.:GloptiPoly:Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Soft. 29, 165-194(2003) [120] Corless, R.M., Gianni, P.M., Trager, B.M.:A reordered Schur factorization method for zerodimensional polynomial systems with multiple roots. Proc. ACM Int. Symp. Symbolic and Algebraic Computation, pp. 133-140, Maui, Hawaii (1997) [121] Sun, D.F., Toh, K.-C., Yuan, Y.C., Zhao, X.Y.:SDPNAL+:A Matlab software for semidefinite programming with bound constraints (version 1.0). Optim. Methods Softw. 35, 87-115(2020) [122] Helton, J.W., McCullough, S., Vinnikov, V.:Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105-191(2006) [123] Blekherman, G., Parrilo, P.A., Thomas, R.R.:Semidefinite Optimization and Convex Algebraic Geometry. SIAM, Philadelphia (2013) [124] Pang, J.S., Qi, L.:Nonsmooth equations:motivation and algorithms. SIAM. J. Optim. 3, 443-465(1993) [125] Facchinei, F., Pang, J.S.:Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol 1 and Vol 2. Springer, New York (2003) [126] Clarke, F.H.:Optimization and Nonsmooth Analysis. Wiley, New York (1983) [127] Qi, L., Sun, J.:A nonsmooth version of Newton's method. Math. Program. 58, 353-367(1993) [128] Sun, D.F.:The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761-776(2006) [129] Sun, D.F., Sun, J., Zhang, L.W.:The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349-391(2008) [130] Faraut, U., Korányi, A.:Analysis on Symmetric Cones (Oxford Mathematical Monographs). Oxford University Press, New York (1994) [131] Kummer, B.:Newton's method for non-differentiable functions. In:Guddat, J., Bank, B., Hollatz, H., Kall, P., Karte, D., Kummer, B., Lommatzsch, K., Tammer, L., Vlach, M., Zimmermann, K. (eds.) Advances in Mathematical Optimization, pp. 114-125. Akademi-Verlag, Berlin (1988) [132] Rockafellar, R.T., Wets, R.:Variational Analysis. Grundlehren der Mathematischen Wissenschaften, Vol. 317. Springer, Berlin (1998) [133] Alizadeh, F., Haeberly, J.P.A., Overton, O.L.:Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111-128(1997) [134] Chan, Z.X., Sun, D.:Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming. SIAM J. Optim. 19, 370-396(2008) [135] Rockafellar, R.T.:Convex Analysis. Princeton University Press, New Jersey (1970) [136] Iarrobino, A., Kanev, V.:Power Sums, Gorenstein Algebras, and Determinantal Varieties. Lecture Notes in Mathematics, No. 1721, Springer (1999) [137] Landsberg, J.M.:Tensors:geometry and applications. Graduate Studies in Mathematics, 128, AMS, Providence, RI, (2012) [138] Sturmfels, B.:Gröbner Bases and Convex Polytopes. University Lecture Series 8, Amer. Math. Soc., Providence, RI (1996) [139] Cox, D., Little, J., Schenck, H.:Toric Varieties. Graduate Studies in Mathematics, Volume 124, AMS (2011) [140] Sanyal, R., Sottile, F., Sturmfels, B.:Orbitopes. Mathematika 57, 275-314(2011) [141] Gouveia, J., Parrilo, P.A., Thomas, R.R.:Theta bodies for polynomial ideals. SIAM J. Optim. 20, 2097-2118(2010) [142] Draisma, J., Horobet, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.:The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16, 99-149(2016) [143] Nie, J.:An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225-255(2013) [144] Reznick, B.:Extremal PSD forms with few terms. Duke Math. J. 45, 363-374(1978) [145] Nie, J., Demmel, J.:Sparse SOS relaxations for minimizing functions that are summation of small polynomial. SIAM J. Optim. 19, 1534-1558(2009) [146] Waki, H., Kim, S., Kojima, M., Muramatsu, M.:Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218-242(2006) [147] Gaterman, K., Parrilo, P.:Symmetry groups, semidefinite programs and sums of squares. J. Pure Appl. Algebra 192, 95-128(2004) [148] Parrilo, P.A.:Exploiting algebraic structure in sum of squares programs, in Positive Polynomials in Control, D. Henrion and A. Garulli, eds., LNCIS 312, pp. 181-194(2005) [149] Vallentin, F.:Symmetry in semidefinite programs. Linear Algebra Appl. 430, 360-369(2009) [150] Lasserre, J.B.:Convergent semidefinite relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822-843(2006) |
[1] | Yu-Xuan Jin, Jin-Ling Zhao. A Levenberg–Marquardt Method for Solving the Tensor Split Feasibility Problem [J]. Journal of the Operations Research Society of China, 2021, 9(4): 797-817. |
[2] | Zoya Duriagina, Igor Lemishka, Igor Litvinchev, Jose Antonio Marmolejo, Alexander Pankratov, Tatiana Romanova, Georgy Yaskov. Optimized Filling of a Given Cuboid with Spherical Powders for Additive Manufacturing [J]. Journal of the Operations Research Society of China, 2021, 9(4): 853-868. |
[3] | Promila Kumar, Jyoti Dagar. Optimality and Duality for Multiobjective Semi-infinite Variational Problem Using Higher-Order B-type I Functions [J]. Journal of the Operations Research Society of China, 2021, 9(2): 375-393. |
[4] | Bhuwan Chandra Joshi, Shashi Kant Mishra, Pankaj Kumar. On Semi-infinite Mathematical Programming Problems with Equilibrium Constraints Using Generalized Convexity [J]. Journal of the Operations Research Society of China, 2020, 8(4): 619-636. |
[5] | Yan Li, Sheng-Long Hu, Jie Wang, Zheng-Hai Huang. An Introduction to the Computational Complexity of Matrix Multiplication [J]. Journal of the Operations Research Society of China, 2020, 8(1): 29-43. |
[6] | Khushboo Verma, Pankaj Mathur, Tilak Raj Gulati. A New Approach on Mixed-Type Nondifferentiable Higher-Order Symmetric Duality [J]. Journal of the Operations Research Society of China, 2019, 7(2): 321-335. |
[7] | Tao-Ran Fu, Jin-Yan Fan. Successive Partial-Symmetric Rank-One Algorithms for Almost Unitarily Decomposable Conjugate Partial-Symmetric Tensors [J]. Journal of the Operations Research Society of China, 2019, 7(1): 147-167. |
[8] | Promila Kumar, Bharti Sharma, Jyoti Dagar. Interval-Valued Programming Problem with Infinite Constraints [J]. Journal of the Operations Research Society of China, 2018, 6(4): 611-626. |
[9] |
Murat Adivar, Shu-Cherng Fang.
|
[10] | Yi-Yong Li· Qing-Zhi Yang · Xi He. A Method with Parameter for Solving the Spectral Radius of Nonnegative Tensor [J]. Journal of the Operations Research Society of China, 2017, 5(1): 3-. |
[11] | Jun-Jie Yue · Li-Ping Zhang· Mei Lu· Li-Qun Qi. The Adjacency and Signless Laplacian Spectra of Cored Hypergraphs and Power Hypergraphs [J]. Journal of the Operations Research Society of China, 2017, 5(1): 27-. |
[12] | Jiao-Jiao Hou · Chen Ling · Hong-Jin He. A Class of Second-Order Cone Eigenvalue Complementarity Problems for Higher-Order Tensors [J]. Journal of the Operations Research Society of China, 2017, 5(1): 45-. |
[13] | Mao-Lin Che · Yi-Min Wei. An Inequality for the Perron Pair of an Irreducible and Symmetric Nonnegative Tensor with Application [J]. Journal of the Operations Research Society of China, 2017, 5(1): 65-. |
[14] | Jing-Jing Jia · Qing-Zhi Yang. Upper Bounds for the Spectral Radii of Nonnegative Tensors [J]. Journal of the Operations Research Society of China, 2017, 5(1): 83-. |
[15] | Yi-Ju Wang· Guang-Lu Zhou. A Hybrid Second-Order Method for Homogenous Polynomial Optimization over Unit Sphere [J]. Journal of the Operations Research Society of China, 2017, 5(1): 99-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||