[1] Banerjee, M., Chakraborty, R., Ofori, E., Vaillancourt, D., Vemuri, B.:Nonlinear regression on Riemannian manifolds and its applications to neuro-image analysis. In:Medical Image Computing and Computer-Assisted Intervention, pp. 719-727(2015) [2] Banerjee, M., Chakraborty, R., Ofori, E., Okun, M., Vaillancourt, D., Vemuri, B.:A nonlinear regression technique for manifold valued data with applications to medical image analysis. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4424-4432(2016) [3] Erus, G., Doshi, J., An, Y., Verganelakis, D., Resnick, S.:Longitudinally and inter-site consistent multi-atlas based parcellation of brain anatomy using harmonized atlases. NeuroImage 166, 71-78(2018) [4] Serag, A., Aljabar, P., Counsell, S., Boardman, J., Hajnal, J., Rueckert, D.:LISA:longitudinal image registration via spatio-temporal atlases. IEEE Trans. Med. Imaging 25(5), 334-337(2012) [5] Ying, S., Wu, G., Wang, Q., Shen, D.:Groupwise registration via graph shrinkage on the image manifold. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2323-2330(2013) [6] Ying, S., Wu, G., Wang, Q., Shen, D.:Hierarchical unbiased graph shrinkage (HUGS):a novel groupwise registration for large data set. NeuroImage 84(1), 626-638(2014) [7] Zhang, Y., Wei, H., Cronin, M., He, N., Yan, F., Liu, C.:Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. NeuroImage 171, 176-189(2018) [8] Bai,Y.,Shen,K.:Alternatingdirectionmethodofmultipliersfor(l1-l2)-regularizedlogisticregression model. J. Oper. Res. Soc. China 4(2), 243-253(2016) [9] Zhang, Q., Liu, Y., Zhou, W., Wang, Z.:A sequential regression model for big data with attributive explanatory variables. J. Oper. Res. Soc. China 3(4), 475-488(2015) [10] Fletcher, P.:Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105, 171-185(2013) [11] Sun, Z., Lelieveldt, B., Staring, M.:Fast linear geodesic shape regression using coupled logdemons registration. In:International Symposium on Biomedical Imaging, pp. 1276-1279(2015) [12] Batzies, E., Hüper, K., Machado, L., Leite, F.:Geometric mean and geodesic regression on Grassmannians. Linear Algorithms Appl. 466, 83-101(2015) [13] Fishbaugh, J., Durrleman, S., Prastawa, M., Gerig, G.:Geodesic shape regression with multiple geometries and sparse parameters. Med. Image Anal. 39, 1-17(2017) [14] Cheng, M., Wu, H.:Local linear regression on manifolds and its geometric interpretation. JASA 108, 1421-1434(2013) [15] Aswani, A., Bickel, P., Tomlin, C.:Regression on manifolds:estimation of the exterior derivative. Ann. Stat. 39(1), 48-81(2011) [16] Nilsson, J., Sha, F., Jordan, M.:Regression on manifolds using kernel dimension reduction. In:International Conference on Machine Learning, pp. 697-704(2007) [17] Bickel, P.J., Li, B.:Local Polynomial Regression on Unknown Manifolds. Lecture Notes-Monograph Series, vol. 54, pp. 177-186(2007) [18] Shi, X., Styner, M., Lieberman, J., Ibrahim, J., Lin, W., Zhu, H.:Intrinsic regression models for manifold-valued data. In:Medical Image Computing and Computer-Assisted Intervention, pp. 192-199(2009) [19] Hinkle, J., Fletcher, P., Joshi, S.:Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Image Vis. 50, 32-52(2014) [20] Yang, Y., Dunson, D.:Bayesian manifold regression. Ann. Stat. 44, 876-905(2016) [21] Zhang,P.,Sun,R.,Huang,T.:Ageometricmethodforcomputationofgeodesiconparametricsurfaces. Comput. Aided Geom. Des. 38, 24-37(2015) [22] Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.:Diffeomorphic demons:efficient nonparametric image registration. NeuroImage 45, S61-S72(2009) [23] Lorenzi, M., Ayache, N., Frison, G., Pennec, X.:Lcc-demons:a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 81, 470-483(2013) [24] Beg, M., Miller, M., Trouve, A., Younes, L.:Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139-157(2005) [25] Kimmel, R., Sethian, J.:Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95, 8431-8435(1998) [26] ing,S.,Li,D.,Xiao,B.,Peng,Y.,Du,S.,Xu,M.:Nonlinearimageregistrationwithbidirectionalmetric and reciprocal regularization. PLoS ONE. (2017). https://doi.org/10.1371/journal.pone.0172432 [27] Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.:Iconic feature based nonrigid registration:the PASHA algorithm. Comput. Vis. Image Underst. 89, 272-298(2003) [28] He, B., Yuan, X.:Alternating direction method of multipliers for linear programming. J. Oper. Res. Soc. China 4(4), 425-436(2016) [29] He, B., Xu, M., Yuan, X.:Block-wise ADMM with a relaxation factor for multiple-block convex programming. J. Oper. Res. Soc. China 6(4), 485-505(2018) |