[1] Philip, J.:Algorithms for the vector maximization problem. Math. Program. 2, 207-229(1972) [2] An, L.T.H., Muu, L.D., Tao, P.D.:Numerical solution for optimization over the efficient set by d.c. optimization algorithms. Oper. Res. Lett. 19, 117-128(1996) [3] Benson, H.P., LEE, D.:Outcome-based algorithm for optimizing over the efficient set of a bi-criteria linear programming problem. J. Optim. Theory Appl. 88, 77-105(1996) [4] Benson, H.P.:Generating the efficient outcome set in multiple objective linear programs:the bi-criteria case. Acta Math. Vietnam 22, 29-51(1997) [5] Benson, H.P.:Further analysis of an outcome set-based algorithm for multiple objective linear programming. J. Optim. Theory Appl. 97, 1-10(1998) [6] Benson, H.P.:Hybrid approach for solving multiple objective linear programs in outcome space. J. Optim. Theory Appl. 98, 17-35(1998) [7] Benson, H.P.:An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13, 1-24(1998) [8] Bolintinéanu, S.:Optimality conditions for minimization over the (weakly or properly) efficient set. J. Math. Anal. Appl. 173(2), 523-541(1993) [9] Bolintinéanu, S.:Necessary conditions for nonlinear suboptimization over the weakly-efficient set. J. Optim. Theory Appl. 78, 579-598(1993) [10] Bonnel, H., Kaya, C.Y.:Optimization over the efficient set of multi-objective control problems. J. Optim. Theory Appl. 147(1), 93-112(2010) [11] Craven, B.D.:Aspects of multicriteria optimization. In:Recent Developments in Mathematical Programming, pp. 93-100. Gordon and Breach Science Publishers (1991) [12] Dauer, J.P.:Optimization over the efficient set using an active constraint approach. J. Oper. Res. 35, 185-195(1991) [13] Dauer, J.P., Fosnaugh, T.A.:Optimization over the efficient set. J. Global Optim. 7, 261-277(1995) [14] Fülöp, J.:A cutting plane algorithm for linear optimization over the efficient set. In:Generalized Convexity. Lecture notes in Economics and Mathematical System. vol. 405, pp. 374-385. Springer, Berlin (1994) [15] Horst, R., Thoai, N.V.:Maximizing a concave function over the efficient or weakly-efficient set. Eur. J. Oper. Res. 117, 239-252(1999) [16] Horst, R., Thoai, N.V., Yamamoto, Y., Zenke, D.:On optimization over the efficient set in linear multicriteria programming. J. Optim. Theory Appl. 134, 433-443(2007) [17] Kim, N.T.B., Thang, T.N.:Optimization over the efficient set of a bi-criteria convex programming problem. Pac. J. Optim. 9, 103-115(2013) [18] Bonnel, H., Collonge, J.:Stochastic optimization over a pareto set associated with a stochastic multiobjective optimization problem. J. Optim. Theory Appl. 162, 405-427(2014) [19] Bonnel, H., Collonge, J.:Optimization over the pareto outcome set associated with a convex biobjective optimization problem:theoretical results, deterministic algorithm and application to the stochastic case. J. Global Optim. 62, 481-505(2015) [20] Yamamoto, Y.:Optimization over the efficient set:an overview. J. Global Optim. 22, 285-317(2002) [21] Konno, H., Thach, P.T., Yokota, D.:Dual approach to minimization on the set of pareto-optimal solutions. J. Optim. Theory Appl. 88, 689-707(1996) [22] Konno, H., Inori, H.M.:Bond portfolio optimization by bilinear fractional programming. J Oper Res Soc Jpn 32, 143-158(1989) [23] Benson, H.P.:Optimization over the efficient set. J. Math. Anal. Appl. 98, 562-580(1984) [24] Benson, H.P.:A finite, non-adjacent extreme point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73, 47-64(1992) [25] Bolintinéanu, S.:Minimization of a quasi-concave function over an efficient set. Math. Program. 61, 89-110(1993) [26] Bonnel, H., Morgan, J.:Semivectorial bilevel optimization problem:penalty approach. J. Optim. Theory Appl. 131, 365-382(2006) [27] Bonnel, H., TodjihoundÉ, L., Udrişte, C.:Semivectorial bilevel optimization on Riemannian manifolds. J. Optim. Theory Appl. 167, 464-486(2015) [28] Bonnel, H.:Optimality conditions for the semivectorial bilevel optimization problem. Pac. J. Optim. 2, 447-468(2006) [29] Bonnel, H., Morgan, J.:Semivectorial bilevel convex optimal control problems. SIAM J. Control Optim. 50(6), 3224-3241(2012) [30] Bonnel, H., Morgan, J.:Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems Computational and analytical mathematics. Springer, New York (2013) [31] Ren, A., Wang, Y.:A novel penalty function method for semivectorial bilevel programming problem Appl. Math. Model. 40(1), 135-149(2016) [32] Dempe, S.:Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002) [33] Dempe, S., Dutta, J., Mordukhovich, B.S.:New necessary optimality conditions in optimistic bilevel programming. Optimization 56(5-6), 577-604(2007) [34] Dempe, S., Gadhi, N., Zemkoho, A.B.:New optimality conditions for the semivectorial bilevel optimization problem. J. Optim. Theory Appl. 157(1), 54-74(2013) [35] Dempe,S.,Mehlitz,P.:Semivectorialbilevelprogrammingversusbilevelprogramming.Optimization (2019). https://doi.org/10.1080/02331934.2019.1625900 [36] Liu, B., Wan, Z., Chen, J., et al.:Optimality conditions for pessimistic semivectorial bilevel programming problem. J. Inequal. Appl. 41(1), 1-26(2014) [37] Zemkoho, A.B.:Solving ill-posed bilevel programs. Set-valued Var. Anal. 24(3), 423-448(2016) [38] Zheng,Y.,Chen,J.,Cao,X.:Aglobalsolutionmethodforsemivectorialbilevelprogrammingproblem. Filomat 28(8), 1619-1627(2014) [39] Ankhili, Z., Mansouri, A.:An exact penalty on bilevel programs with linear vector optimization lower level. Eur. J. Oper. Res. 197, 36-41(2009) [40] Zheng, Y., Wan, Z.:A solution method for semivectorial bilevel programming problem via penalty method. J. Appl. Math. Comput. 37, 207-219(2011) [41] Eichfelder, G.:Multiobjective bilevel optimization. Math. Program. Ser. 123, 419-449(2010) [42] Morgan, J.:Constrained well-posed two-level optimization problems. In:Clarke, F., Demyanov, V., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, pp. 307-326. Plenum Press, New York (1989) [43] Loridan, P., Morgan, J.:A theoretical approximation scheme for stackelberg problems. J. Optim. Theory Appl. 61, 95-110(1989) [44] Loridan,P.,Morgan,J.:Weakviastrongstackelbergproblem:newresults.J.GlobalOptim. 8,263-287(1996) [45] Lignola, M.B., Morgan, J.:Stability of regularized bilevel programming problems. J. Optim. Theory Appl. 93, 575-596(1997) [46] Calvete, H., Gale, C.:On linear bilevel problems with multiple objectives at the lower level. Omega 39, 33-40(2011) [47] Bonnel, H., Morgan, J.:Optimality conditions for semivectorial bilevel convex optimal control problems. Computational and analytical mathematics. In:Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., J.D. Vanderwer, H. Wolkowicz (eds.) Honor of Jonathan Borwein's 60th Birthday, pp. 43-74. Springer (2013) [48] Dempe, S.:Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52, 333-359(2003) [49] Ehrgott, M.:Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 491. Springer, Berlin (2000) [50] Göpfert, A., Riahi, H., Tammer, C., Zalinescu, C.:Variational Methods in Partially Ordered Spaces. Springer, New York (2003) [51] Chen, G., Huang, X., Yang, X.:Vector Optimization:Set Valued and Variational Analysis. Springer, Berlin (2005) [52] Jahn, J.:Vector Optimization. Springer, Berlin (2004) [53] Luc, D.T.:Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems 319. Springer, Berlin (1989) [54] Miettinen, K.M.:Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1998) [55] Henig, M.I.:Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387-407(1982) [56] Phelps, R.R.:Convex Functions Monotone Operators and Differentiability. Lecture Notes in Mathematics. Springer, Berlin (1993) [57] Yu, P.L.:Multiple-Criteria Decision Making. Plenum Press, New York (1985) [58] Geoffrion, A.M.:Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618-630(1968) [59] Fiacco, A.V., McCormick, G.P.:Nonlinear Programming:Sequential Unconstrained Minimization Techniques. Wiley, New York (1968) |