[1] Skiena, S.:The Stony Brook Algorithm Repository. Springer, Berlin (1997) [2] Martello, S., Toth, P.:Knapsack Problems:Algorithms and Computer Implementations. Wiley, Chichester (1990) [3] Kellerer, H., Pferschy, U., Pisinger, D.:Knapsack Problem. Springer, Berlin (2004) [4] Csirik, J., Frenk, H., Labbé, M., Zhang, S.:Heuristics for the 0-1 min-knapsack problem. Acta Cybern. 10, 15-20(1991) [5] Malaguti, E., Monaci, M., Paronuzzi, P., Pferschy, U.:Integer optimization with penalized fractional values:the knapsack case. Eur. J. Oper. Res. 273, 874-888(2019) [6] Burkard, R.E., Pleschiutschnig, C., Zhang, J.Z.:Inverse median problems. Discrete Optim. 1, 23-39(2004) [7] Nguyen, K.T., Chi, N.T.L.:A model for the inverse 1-median problem on trees under uncertain costs. Opusc. Math. 36, 513-523(2016) [8] Brickell, E.F.:Breaking iterated knapsacks. Adv. Cryptol. Proc. CRYPTO 84, 342-358(1985) [9] Lenstra, H.W.:Lattices. In:Algorithmic Number Theory:Lattices, Number Fields, Curves and Cryptography. Mathematical Sciences Research Institute Publications, vol 44, pp 127-181. Cambridge University Press, Cambridge (2008) [10] Drezner, Z., Mehrez, A., Wesolowsky, G.O.:The facility location problem with limited distances. Transp. Sci. 25, 183-187(1991) [11] Liu, T.Y., Jiang, H.:Minimizing sum of truncated convex functions and its applications. J. Comput. Graph. Stat. 28, 1-10(2019) [12] Balas, E., Zemel, E.:An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1130-1154(1980) [13] Garey, M.R., Johnson, D.S.:Computers and Intractability:A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., Sanfrancisco (1979) |