[1] Andersen, E.D., Gondzio, J., Meszaros, C., Xu, X.:Implementation of interior-point methods for large scale linear programming. In:Terlaky, T. (ed.) Interior Point Methods of Mathematical Programming, pp. 189-252. Kluwer Academic Publishers, Dordrecht (1996) [2] Bai, Y.Q., El Ghami, M., Roos, C.:A comparative study of kernel functions for primal-dual interiorpoint algorithms in linear optimization. SIAM J. Opitm. 15, 101-128(2004) [3] Cartis, C.:Some disadvantages of a Mehrotra-type primal-dual corrector interior point algorithm for linear programming. Appl. Numer. Math. 59, 1110-1119(2009) [4] Cartis, C., Gould, N.I.M.:Finding a point in the relative interior of a polyhedron. Technical Report NA-07/01. Oxford University, Computing Laboratory (2007) [5] Davis, T.A.:Multifrontal multithreaded rank-revealing sparse QR factorization, Technical Report, Department of Computer and Information Science and Engineering, University of Florida (2008) [6] Klee, V., Minty, G.:How good is the simplex algorithm? In:Shisha, O., (eds.) Inequalities, Vol. III, pp. 159-175, Academic Press, New York (1972) [7] Kojima, M., Megiddo, N., Mizuno, S.:A primal-dual infeasible-interior-point algorithm for linear programming. Math. Program. Ser. A 61, 261-280(1993) [8] Luenberger, D.G., Ye, Y.:Linear and Nonlinear Programming. Springer, New York (2008) [9] Lustig, I.J., Marsten, R.E., Shanno, D.F.:Computational experience with a primal-dual interior point method for linear programming. Linear Algebra Appl. 152, 191-222(1991) [10] Mehrotra, S.:On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575-601(1992) [11] Monteiro, R., Adler, I., Resende, M.:A polynominal-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Math. Oper. Res. 15, 191-214(1990) [12] Nocedal, J., Wright, S.J.:Numerical Optimization. Springer, New York (1999) [13] Peng, J., Roos, C., Terlaky, T.:Self-Regularity:A New Paradigm for Primal-Dual Interior Point Algorithms. Princeton University Press, Princeton (2002) [14] Roos, C., Terlaky, T.:and J-Ph, Vial, Theory and Algorithms for Linear Optimization:An Interiorpoint Approach. Wiley, Chichester (1997) [15] Salahi, M., Peng, J., Terlaky, T.:On mehrotra-type predictor-corrector algorithms. SIAM J. Optim 18, 1377-1397(2007) [16] Shmakov, F.S.L.:A universal method of solving quartic equations. Int. J. Pure Appl. Math. 71, 251-259(2011) [17] Todd, M.J.:The many facets of linear programming. Math. Program. Ser. B 91, 417-436(2002) [18] Wright, S.:Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997) [19] Yang, Y.:Arc-Search Techniques for Interior-Point Methods. CRC Press, Boca Raton, FL (1997) [20] Yang, Y.:A polynomial arc-search interior-point algorithms for convex quadratic programming. Eur. J. Oper. Res. 215, 25-38(2011) [21] Yang, Y.:A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming. J. Optim. Theory Appl. 158(3), 859-873(2013) [22] Yang, Y., Zhou, Z.:An analytic solution to Wahba's problem. Aerosp. Sci. Technol. 30(1), 46-49(2013) [23] Ye, Y.:Interior-Point Algorithms:Theory and Analysis. Wiley, New York (1997) [24] Zhang,Y.:SolvingLarge-scaleLinearProgramsbyInterior-PointMethodsUndertheMatlabEnvironment. Technical Report TR96-01. Department of Mathematics and Statistics, University of Maryland, Maryland (1996) |