[1] Ahuja, R.K., Magnant, T.L., Orlin, J.B.: Network Flows: Theory. Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993) [2] Yang, C., Zhang, J.Z., Ma, Z.F.: Inverse maximum flow and minimum cut problems. Optimization 40, 147–170(1997) [3] Liu, L.C., Zhang, J.Z.: Inverse maximum flow problems under the weighted Hamming distance. J. Comb. Optim. 12, 395–408(2006) [4] Deaconu, A.: The inverse maximum flow problem with lower and upper bounds for the flow. Yugosl. J. Oper. Res. 18, 13–22(2008) [5] Deaconu, A.: The inverse maximum flow problem considering l∞ norm. RAIRO Oper. Res. 42, 401–414(2008) [6] Deaconu, A., Ciurea, E.: The inverse maximum flow problem under Lk norms. Carpathian J. Math. 28, 59–66(2012) [7] Ciurea, E., Deaconu, A.: Inverse minimum flow problem. J. Appl. Math. Comput. 23, 193–203(2007) [8] Güler, C., Hamacher, H.W.: Capacity inverse minimum cost flow problem. J. Comb. Optim. 19, 43–59(2010) [9] Tayyebi, J., Aman, M.: Note on “Inverse minimum cost flow problems under the weighted Hamming distance”. Eur. J. Oper. Res. 234, 916–920(2014) [10] Alizadeh, B., Burkard, R.E., Pferschy, U.: Inverse 1-center location problems with edge length augmentation on trees. Computing 86, 331–343(2009) [11] Guan, X.C., Zhang, B.W.: Inverse 1-median problem on trees under weighted Hamming distance. J. Glob. Optim. 54, 75–82(2012) [12] Nguyen, K.T., Sepasian, A.R.: The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance. J. Comb. Optim. 32, 872–884(2016) [13] Nguyen, K.T., Vui, P.T.: The inverse p-maxian problem on trees with variable edge lengths. Taiwan. J. Math. 20, 1437–1449(2016) [14] He, Y., Zhang, B.W., Yao, E.Y.: Weighted inverse minimum spanning tree problems under Hamming distance. J. Comb. Optim. 9, 91–100(2005) [15] Liu, L.C., Wang, Q.: Constrained inverse min-max spanning tree problems under the weighted Hamming distance. J. Glob. Optim. 43, 83–95(2009) [16] Liu, L.C., Yao, E.Y.: Inverse min-max spanning tree problem under the weighted sum-type Hamming distance. Theor. Comput. Sci. 396, 28–34(2008) [17] Zhang, B.W., Zhang, J.Z., He, Y.: Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance. J. Glob. Optim. 34, 467–474(2006) [18] Liu, L.C., Yao, E.Y.: A weighted inverse minimum cut problem under the bottleneck type Hamming distance. Asia Pac. J. Oper. Res. 24, 725–736(2007) [19] Zhang, J.Z., Cai, M.C.: Inverse problem of minimum cuts. Math. Methods Oper. Res. 47, 51–58(1998) [20] Heuberger, C.: Inverse Optimization: a survey on problems, methods, and results. J. Comb. Optim. 8, 329–361(2004) [21] Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceeding of annual ACM symposium on theory of computing, pp. 765–774(2013) |