[1] Ong, H.C.L.:Virus recognition in electron microscope images using higher order spectral features. NPhD thesis, Queensland University of Technology (2006) [2] Goldsmith, C.S., Miller, S.E.:Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 22(4), 552-563(2009) [3] Biel, S.S., Madeley, D.:Diagnostic virology-the need for electron microscopy:a discussion paper. J. Clin. Virol. 22(1), 1-9(2001) [4] Zhang,Y.,Hung,T.,Song,J.,He,J.:Electron microscopy:essentials for viral structure,morphogenesis and rapid diagnosis. Sci. China Life Sci. 56(5), 421-430(2013) [5] Nanni, L., Brahnam, S., Ghidoni, S., Menegatti, E.:Improving the descriptors extracted from the co-occurrence matrix using preprocessing approaches. Expert Syst. Appl. 42(22), 8989-9000(2015) [6] Abdullah, M.F.A., Sayeed, M.S., Muthu, K.S., Bashier, H.K., Azman, A., Ibrahim, S.Z.:Face recognition with symmetric local graph structure (SLGS). Expert Syst. Appl. 42(14), 6131-6137(2014) [7] Lowe, D.G.:Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91-110(2004) [8] Yang, P., Yang, G.:Feature extraction using dual-tree complex wavelet transform and gray level co-occurrence matrix. Neurocomputing 197(C), 212-220(2016) [9] Zhang, L., Tjondronegoro, D., Chandran, V.:Random Gabor based templates for facial expression recognition in images with facial occlusion. Neurocomputing 145(18), 451-464(2014) [10] Chen,C.C.,Huang,C.L.:Markov random fields for texture classification.PatternRecogn.Lett. 14(11), 907-914(1993) [11] Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.:Multiple sparse representations classification. PLoS ONE 10(8), e0136827(2015) [12] Ojala, T., Pietikainen, M., Maenpaa, T.:Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Eur. Conf. Comput. Vis. 24(7), 404-420(2000) [13] Nanni, L., Lumini, A., Brahnam, S.:Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634-3641(2012) [14] Liao, S., Chung, A.C.S.:Survey on LBP based texture descriptors for image classification. In:Computer Vision-ACCV 2007:8th Asian Conference on Computer Vision, Tokyo, Japan, pp. 672-679(2007). [15] Hussain, S.U., Triggs, B.:Visual recognition using local quantized patterns. Br. Mach. Vis. Conf. s3-2(94), 99.1-99.11(2012) [16] Satpathy, A., Jiang, X., Eng, H.L.:LBP-based edge-texture features for object recognition. Br. Mach. Vis. Conf. 23(5), 1953-1964(2014) [17] Zhang, W., Shan, S., Gao, W., Chen, X.:Local Gabor binary pattern histogram sequence (LGBPHS):a novel non-statistical model for face representation and recognition. Tenth IEEE Int. Conf. Comput. Vis. 1(1), 786-791(2005) [18] Yang, J., Jiao, Y., Xiong, N., Park, D.S.:Fast face gender recognition by using local ternary pattern and extreme learning machine. KSII Trans. Internet Inf. Syst. 7(7), 1705-1720(2013) [19] dos Santos, F.L.C., Paci, M., Nanni, L., Brahnam, S., Hyttinen, J.:Computer vision for virus image classification. Biosyst. Eng. 138, 11-12(2015) [20] Nanni, L., Brahnam, S., Lumini, A.:Combining different local binary pattern variants to boost performance. Expert Syst. Appl. 38(5), 6209-6216(2011) [21] Guo, Z., Zhang, L., Zhang, D.:A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657-1663(2010) [22] Guo, Z., Wang, X., Zhou, J., You, J.:Robust texture image representation by scale selective local binary patterns. IEEE Trans. Image Process. 25(2), 687-699(2016) [23] Li, Z., Liu, G., Yang, Y., You, J.:Scale- and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE Trans. Image Process. 21(4), 2130-2140(2012) [24] Song, K., Yan, Y., Zhao, Y., Liu, C.:Adjacent evaluation of local binary pattern for texture classification. J. Vis. Commun. Image Represent. 33(C), 323-339(2015) [25] Ahonen, T., Matas, J., He, C., Pietikäinen, M.:Rotation invariant image description with local binary pattern histogram Fourier features. Image Anal. 5575(4), 61-70(2009) [26] Ying, S., Wen, Z., Shi, J., Peng, Y., Peng, J., Qiao, H.:Manifold preserving:an intrinsic approach for semisupervised distance metric learning. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2731-2742(2018) [27] Hu, L., Hu, J., Ye, Z., Shen, C., Peng, Y.:Performance analysis for SVM combining with metric learning. Neural Process Lett (2018). https://doi.org/10.1007/s11063-017-9771-7 [28] Ren, J., Jiang, X., Yuan, J.:Relaxed local ternary pattern for face recognition. In:IEEE International Conference on Image Processing, pp. 3680-3684(2014) [29] Chang, C.C., Lin, C.J.:LIBSVM:a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 389-396(2007) [30] Nanni, L., Paci, M., Brahnam, S., Ghidoni, S., Menegatti, E.:Virus image classification using different texture descriptors. In:The International Conference on Bioinformatics and Computational Biology. 56-61(2013). [31] Kylberg, G., Uppstrom, M., Sintorn, I.M.:Virus texture analysis using local binary patterns and radial density profiles. Secur. Commun. Netw. 7042, 2153-2159(2011) [32] Wen, Z., Li, Z., Peng, Y., Ying, S.:Virus image classification using multi-scale completed local binary pattern features extracted from filtered images by multi-scale principal component analysis. Pattern Recogn. Lett. 79, 25-30(2016) [33] Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.:PCANet:A simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017-5032(2015) |