[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.:Generative adversarial nets. In:Advances in Neural Information Processing Systems, pp. 2672-2680(2014) [2] Manisha, P., Gujar, S.:Generative adversarial networks (gans):What it can generate and what it cannot?. arXiv:1804.00140(2018) [3] Arjovsky, M., Chintala, S., Bottou, L.:Wasserstein GAN. arXiv:1701.07875(2017) [4] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.:Improved training of Wasserstein GANs. arXiv:1704.00028(2017) [5] Radford, A., Metz, L., Chintala, S.:Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434(2015) [6] Denton, E.L., Chintala, S., Fergus, R., et al.:Deep generative image models using a Laplacian pyramid of adversarial networks. In:Advances in Neural Information Processing Systems, pp. 1486-1494(2015) [7] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.:Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802(2016) [8] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.:Generative adversarial text to image synthesis. arXiv:1605.05396(2016) [9] Li, Y., Swersky, K., Zemel, R.:Generative moment matching networks. In:Proceedings of the 32nd International Conference on Machine Learning, pp. 1718-1727(2015) [10] Dziugaite,G.K.,Roy,D.M.,Ghahramani,Z.:Training generativeneuralnetworksviamaximum mean discrepancy optimization. arXiv:1505.03906(2015) [11] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.:A kernel two-sample test. J. Mach. Learn. Res. 13(3), 723-773(2012) [12] van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:Conditional image generation with PixelCNN decoders. In:Advances in Neural Information Processing Systems, pp. 4790-4798(2016) [13] Mirza, M., Osindero, S.:Conditional generative adversarial nets. arXiv:1411.1784(2014) [14] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.:Infogan:interpretable representationlearningbyinformationmaximizinggenerativeadversarialnets.In:AdvancesinNeural Information Processing Systems, pp. 2172-2180(2016) [15] Zhao, J., Mathieu, M., LeCun, Y.:Energy-based generative adversarial network. arXiv:1609.03126(2016) [16] Feng, H., Peng, Y., Zhang, G., Shen, C.:Joint distribution adaptation based TSK fuzzy logic system for epileptic EEG signal identification. In:IEEE International Conference on Bioinformatics and Biomedicine, pp. 340-345(2016) [17] Ren, Y., Zhu, J., Li, J., Luo, Y.:Conditional generative moment-matching networks. In:Advances in Neural Information Processing Systems, pp. 2928-2936(2016) [18] Sutherland, D.J., Tung, H.Y., Strathmann, H., De, S., Ramdas, A., Smola, A., Gretton, A.:Generative models and model criticism via optimized maximum mean discrepancy. arXiv:1611.04488(2016) [19] Wasserman, L.:All of Statistics:a Concise Course in Statistical Inference. Springer, Berlin (2013) [20] Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.:MMD GAN:Towards deeper understanding of moment matching network. arXiv:1705.08584(2017) [21] Long, M., Wang, J., Ding, G., Pan, S.J., Yu, P.S.:Adaptation regularization:a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076-1089(2014) [22] Odena, A., Olah, C., Shlens, J.:Conditional image synthesis with auxiliary classifier GANs. arXiv:1610.09585(2016) [23] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.:Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278-2324(1998) [24] Krizhevsky, A.:Learning multiple layers of features from tiny images. Tech. rep., University of Toronto (2009) [25] Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.:From few to many:illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643-660(2001) [26] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:Improved techniques for training GANs. In:Advances in Neural Information Processing Systems, pp. 2234-2242(2016) [27] Fukumizu, K., Gretton, A., Lanckriet, G.R., Schölkopf, B., Sriperumbudur, B.K.:Kernel choice and classifiability for RKHS embeddings of probability distributions. In:Advances in Neural Information Processing Systems, pp. 1750-1758(2009) [28] Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., Sriperumbudur, B.K.:Optimal kernel choice for large-scale two-sample tests. In:Advances in Neural Information Processing Systems, pp. 1205-1213(2012) [29] Kingma, D., Ba, J.:Adam:a method for stochastic optimization. arXiv:1412.6980(2014) [30] Wang, D., Liu, Q.:Learning to draw samples:With application to amortized MLE for generative adversarial learning. arXiv:1611.01722(2016) |