[1] WhiteHouse:Big Data:Seizing Opportunities Preserving Values (2014)
[2] Cortes, C., Vapnik, V.:Support-vector networks. Mach. Learn. 20(3), 273-297(1995)
[3] Tibshirani, R.:Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267-288(1996)
[4] Zhou, H., Li, L., Zhu, H.:Tensor regression with applications in neuroimaging data analysis. J. Am. Stat. Assoc. 108(502), 540-552(2013)
[5] Zou, H., Hastie, T., Tibshirani, R.:Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265-286(2006)
[6] Cichocki, A., Zdunek, R., Phan, A.H., Amari, Si:Nonnegative Matrix and Tensor Factorizations:Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, London (2009)
[7] Beck, A., Teboulle, M.:A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202(2009)
[8] Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.:Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574-1609(2009)
[9] Nesterov, Y.:Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341-362(2012)
[10] Dang, C.D., Lan, G.:Stochastic block mirror descent methods for nonsmooth and stochastic optimization. SIAM J. Optim. 25(2), 856-881(2015)
[11] Xu, Y., Yin, W.:Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J. Optim. 25(3), 1686-1716(2015)
[12] Liu, J., Wright, S., Re, C., Bittorf, V., Sridhar, S.:An asynchronous parallel stochastic coordinate descent algorithm. In:Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 469-477(2014)
[13] Peng, Z., Xu, Y., Yan, M., Yin, W.:Arock:an algorithmic framework for asynchronous parallel coordinate updates. SIAM J. Sci. Comput. 38(5), A2851-A2879(2016)
[14] Strikwerda, J.C.:A probabilistic analysis of asynchronous iteration. Linear Algebra Appl. 349(13), 125-154(2002)
[15] Hannah, R., Yin, W.:On unbounded delays in asynchronous parallel fixed-point algorithms. arXiv preprint arXiv:1609.04746(2016)
[16] Liu, J., Wright, S.J.:Asynchronous stochastic coordinate descent:parallelism and convergence properties. SIAM J. Optim. 25(1), 351-376(2015)
[17] Cannelli, L., Facchinei, F., Kungurtsev, V., Scutari, G.:Asynchronous parallel algorithms for nonconvex big-data optimization:model and convergence. arXiv preprint arXiv:1607.04818(2016)
[18] Davis, D.:The asynchronous PALM algorithm for nonsmooth nonconvex problems. arXiv preprint arXiv:1604.00526(2016)
[19] Mokhtai, A., Koppel, A., Ribeiro, A.:A class of parallel doubly stochastic algorithms for large-scale learning. arXiv preprint arXiv:1606.04991(2016)
[20] Recht, B., Re, C., Wright, S., Niu, F.:Hogwild:A lock-free approach to parallelizing stochastic gradient descent. In:Advances in Neural Information Processing Systems, pp. 693-701(2011)
[21] Hildreth, C.:A quadratic programming procedure. Naval Res. Logist. Q. 4(1), 79-85(1957)
[22] Grippo, L., Sciandrone, M.:On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127-136(2000)
[23] Luo, Z.Q., Tseng, P.:On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory Appl. 72(1), 7-35(1992)
[24] Tseng, P.:Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475-494(2001)
[25] Hong, M., Wang, X., Razaviyayn, M., Luo, Z.Q.:Iteration complexity analysis of block coordinate descent methods. Math. Program. 163(1-2), 85-114(2017)
[26] Tseng, P., Yun, S.:A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1-2), 387-423(2009)
[27] Lu, Z., Xiao, L.:On the complexity analysis of randomized block-coordinate descent methods. Math. Program. 152(1-2), 615-642(2015)
[28] Richtárik, P., Takáč, M.:Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1-2), 1-38(2014)
[29] Rosenfeld, J.L.:A case study in programming for parallel-processors. Commun. ACM 12(12), 645-655(1969)
[30] Chazan, D., Miranker, W.:Chaotic relaxation. Linear Algebra Appl. 2(2), 199-222(1969)
[31] Bertsekas, D.P.:Distributed asynchronous computation of fixed points. Math. Program. 27(1), 107-120(1983)
[32] Tseng, P., Bertsekas, D.P., Tsitsiklis, J.N.:Partially asynchronous, parallel algorithms for network flow and other problems. SIAM J. Control Optim. 28(3), 678-710(1990)
[33] Frommer, A., Szyld, D.B.:On asynchronous iterations. J. Comput. Appl. Math. 123(1), 201-216(2000)
[34] Gut, A.:A Graduate Course:A Graduate Course. Springer, Berlin (2006)
[35] Lai, M.J., Yin, W.:Augmented 1 and nuclear-norm models with a globally linearly convergent algorithm. SIAM J. Imaging Sci. 6(2), 1059-1091(2013)
[36] Rockafellar, R.T., Wets, R.J.B.:Variational Analysis, vol. 317. Springer, Berlin (2009)
[37] Paatero, P., Tapper, U.:Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111-126(1994)
[38] Xu, Y., Yin, W.:A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700-734(2017) |