[1] Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003) [2] Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recogn. 46(3), 1020–1038 (2013) [3] Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI physical design-from graph partitioning to timing closure (2011). http://vlsicad.eecs.umich.edu/KLMH/downloads/book/chapter5/chap5-111206.pdf [4] Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship. J. Comput. Mediat. Commun. 13(1), 210–230 (2007) [5] Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990) [6] Hungershöfer, J., Wierum, J.-M.: On the quality of partitions based on space-filling curves. In: International Conference on Computational Science, pp. 36–45. Springer (2002) [7] Abbas, Z., Kalavri, V., Carbone, P., Vlassov, V.: Streaming graph partitioning: an experimental study. Proc. VLDB Endow. 11(11), 1590–1603 (2018) [8] Duong, Q., Goel, S., Hofman, J., Vassilvitskii, S.: Sharding social networks. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 223–232 (2013) [9] Karypis, G., Kumar, V.: Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (1997). https://api.semanticscholar. org/CorpusID:7458399 [10] Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program. 95, 91–101 (2003) [11] Jovanovic, R., Voß, S.: A mixed integer program for partitioning graphs with supply and demand emphasizing sparse graphs. Optimiz. Lett. 10, 1693–1703 (2016) [12] Miyazawa, F.K., Moura, P.F.S., Ota, M.J., Wakabayashi, Y.: Integer programming approaches to balanced connected k-partition. arXiv:1911.05723 (2019) [13] Fan, N., Pardalos, P.M.: Linear and quadratic programming approaches for the general graph partitioning problem. J. Global Optim. 48, 57–71 (2010) [14] Fan, N., Zheng, Q.P., Pardalos, P.M.: On the two-stage stochastic graph partitioning problem. In: COCOA (2011). https://doi.org/10.1007/978-3-642-22616-8_39 [15] Henzinger, A., Noe, A., Schulz, C.: Ilp-based local search for graph partitioning. J. Exp. Algorithm. (JEA) 25, 1–26 (2018) [16] Moussawi, A.E., Seghouani, N.B., Bugiotti, F.: Bgrap: Balanced graph partitioning algorithm for large graphs (2021). https://doi.org/10.26421/JDI2.2-2 [17] Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970) [18] Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982) [19] Ugander, J., Backstrom, L.: Balanced label propagation for partitioning massive graphs. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 507–516 (2013) [20] Sanders, P., Schulz, C.:Thinklocally, actglobally:highlybalancedgraphpartitioning.In:International Symposium on Experimental Algorithms, pp. 164–175. Springer (2013) [21] Deng, Z., Suel, T.: Optimizing iterative algorithms for social network sharding. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 400–408. IEEE (2021) [22] Karp, R.M.: Reducibility among combinatorial problems. In: 50 Years of Integer Programming (1972). https://link.springer.com/chapter/10.1007/978-3-540-68279-0_8 [23] Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14, 699–719 (1966) [24] Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. In: Wiley Interscience Series in Discrete Mathematics and Optimization (1988). https://dl.acm.org/doi/book/10.5555/42805 [25] Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization problems (1988). https://doi.org/10.1002/9780470400531.eorms0117 [26] Marinescu, R., Dechter, R.: Evaluating the impact of and/or search on 0–1 integer linear programming. Constraints 15(1), 29–63 (2010) [27] Munapo, E.: Solving the binary linear programming model in polynomial time. Am. J. Oper. Res. 6(1), 1–7 (2016) [28] Leskovec, J., Krevl, A.: SNAP Datasets. http://snap.stanford.edu/data/(2014) |