[1] Song, Y.-S., Qi, L.-Q.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33, 308–323 (2017) [2] Qi, L.-Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005) [3] Che, M.-L., Qi, L.-Q., Wei, Y.-M.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016) [4] Gowda, M.S., Luo, Z.-Y., Qi, L.-Q., Xiu, N.-H.: Z-tensors and complementarity problems. arXiv:1510.07933 (2015) [5] Huang, Z.-H., Qi, L.-Q.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017) [6] Huang, Z.-H., Suo, Y.-Y., Wang, J.: On Q-tensors. arXiv:1509.03088 (2015) [7] Luo, Z.-Y., Qi, L.-Q., Xiu, N.-H.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017) [8] Song, Y.-S., Qi, L.-Q.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015) [9] Bai, X.-L., Huang, Z.-H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016) [10] Dai, P.-F., Wu, S.-L.: The GUS-property and modulus-based methods for tensor complementarity problems. J. Optim. Theory Appl. 195, 976–1006 (2022) [11] Du, S.-Q., Zhang, L.-P.: A mixed integer programming approach to the tensor complementarity problem. J. Glob. Optim. 73, 789–800 (2019) [12] Du, S.-Q., Zhang, L.-P., Chen, C.-Y., Qi, L.-Q.: Tensor absolute value equations. Sci. China Math. 61, 1695–1710 (2018) [13] Han, L.-X.: A continuation method for tensor complementarity problems. J. Optim. Theory Appl. 180, 949–963 (2019) [14] Song, Y.-S., Qi, L.-Q.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016) [15] Liu, D.-D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear A. 66, 1726–1749 (2018) [16] Wang, X.-Z., Che, M.-L., Wei, Y.-M.: Randomized Kaczmarz methods for tensor complementarity problems. Comput. Optim. Appl. 82, 595–615 (2022) [17] Che, M.-L., Qi, L.-Q., Wei, Y.-M.: The generalized order tensor complementarity problems. Numer. Math. Theory Methods Appl. 13, 131–149 (2020) [18] Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15, 779–795 (1994) [19] Sharma, S., Palpandi, K.: Some existence results for the generalized tensor absolute value equation. Filomat 37, 4185–4194 (2023) [20] Shao, J.-Y.: A general product of tensors with applications. Linear Algebra Appl. 439, 2350–2366 (2013) [21] Lloyd, N.G.: Degree Theory. Cambridge University Press, London (1978) [22] Ding, W.-Y., Qi, L.-Q., Wei, Y.-M.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439, 3264–3278 (2013) [23] Wu, S.-L., Li, W., Wang, H.-H.: The perturbation bound of the extended vertical linear complementarity problem. J. Oper. Res. Soc. China (2023). https://doi.org/10.1007/s40305-023-00456-6 [24] Ding, W.-Y., Wei, Y.-M.: Solving multi-linear systems with M-tensors. J. Sci. Comput. 68, 689–715 (2016) |