[1] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithm 8, 221-239 (1994) [2] Korpelevich, G.M.: The extragradient method for finding saddle points and other problem. Ekonomika i Matematicheskie Metody 12, 747-756 (1976) [3] Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199-277 (2004) [4] Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318-335 (2011) [5] Tseng, P.: A modified forward-backward splitting method for maximal monotone mapping. SIAM J. Control Optim. 38, 431-446 (2000) [6] Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequalities. SIAM J. Control Optim. 37, 765-776 (1999) [7] Phan, T.V.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399-409 (2018) [8] Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problem. Springer-Verlag, New York (2003) [9] Sun, D.: A projection and contraction method for the nonlinear complementarity problems and its extensions. Mathematica Numerica Sinica 16, 183-194 (1994) [10] He, B.S., Liao, L.Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111-128 (2002) [11] Rapeepan, K., Satit, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 163, 399-412 (2014) [12] Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Matematicheskie Metody 12(6), 1164-1173 (1976) [13] Thong, D.V., Vinh, N.T., Cho, Y.J.: A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems. Optim. Lett. 14, 1157-1175 (2020) [14] Yang, J., Liu, H.W.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithm 80, 741-752 (2019) [15] Liu, H.W., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl. 77, 491-508 (2020) [16] Yang, J., Liu, H.W., Liu, Z.X.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67, 2247-2258 (2018) [17] Yang, J.: Projection and Contraction Methods for Solving Bilevel Pseudomonotone Variational Inequalities. Acta. Appl. Math. 177, 7 (2022) [18] Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithm 59, 301-323 (2012) [19] He, H., Ling, C., Xu, H.K.: A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 166, 213-233 (2015) [20] Tian, M., Jiang, B.N.: Viscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 40, 902-923 (2019) [21] Pham, V.H., Le Huynh, M., Nguyen, D.H., Tran, V.A.: Modified Tseng’s extragradient methods with self-adaptive step size for solving bilevel split variational inequality problems. Optimization 71(6), 1721-1748 (2020) [22] Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22, 98 (2020) [23] Van Huy, P., Hien, N.D., Anh, T.V.: A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem. Vietnam J. Math. 48, 187-204 (2020) [24] Ogwo, G.N., Izuchukwu, C., Mewomo, O.T.: Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity. Numer. Algor. 88, 1419-1456 (2021) [25] Nguyen Thi, T.T., Nguyen, T.N.: A new iterative method for solving the multiple-set split variational inequality problem in Hilbert spaces. Optimization (2022). https://doi.org/10.1080/02331934.2022.2031193 [26] Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37-46 (1990) [27] Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel Dekker, New York (1984) [28] Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations. Springer Verlag Series. Lecture Notes in Mathematics. ISBN 978-1-84882-189-7 (2009) [29] Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281-295 (1992) [30] Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742-750 (2012) [31] Moudafi, A.: Viscosity methods for fixed points problems. J. Math. Anal. Appl. 241, 46-55 (2000) [32] Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 13, 1-21 (2018) |